- #1
brotherbobby
- 702
- 163
- Homework Statement
- Find the set of all possible real values of ##a## such that the inequality ##(x-(a-1))(x-(a^2+2))<0## holds for all ##x \in (-1,3)##
- Relevant Equations
- If ##\boldsymbol{(x-a)(x-b)<0\Rightarrow x \in (a,b)}##, where ##a<b##. We remember that the "interval" ##(a,b)## stands for the set of all real numbers ##x## such that ##a < x < b##.
Attempt : From the "Relevant Equations" given above, we can compare to see that ##a-1 = -1## and ##a^2+2=3##. These lead (after some algebra) to the three values of ##\boxed{a=0, \pm 1}##.
Issue : The book has a different answer. It says ##\boxed{a\le -1}##.
Book's solution : I copy and paste the solution given in the book below.
Doubt : Besides not following the solution in the text, let's investigate its answer to the problem, viz. ##\boxed{a\le -1}##. So let me take a value of ##a##, say ##a=-3##. That would make the inequality read ##(x+4)(x-11)<0##. This would lead to the following interval for ##x \in (-4,11)##, clearly different from the given interval [##x \in (-1,3)##].
Is the book mistaken? A hint or a suggestion would be welcome.