- #1
frenchkiki
- 26
- 0
Homework Statement
Find the values of p for which the limit exists: lim (x-->0+) xp sin (1/x)
Homework Equations
None
The Attempt at a Solution
Alright so I've broken it down to 3 cases:
p=0
then we have lim (x-->0+) x0sin (1/x) = lim (x-->0+) sin (1/x)
Let xn=1/nπ and yn=1/(2n + 1/2)π
f(xn)= sin (1/xn) = sin (nπ) n=1,2,...,n
lim (n-->∞) xn = 0
lim f(xn) = 0
I'm not too sure how to deduce that the limit doesn't exist here.
p<0
lim (x-->0+) xp sin (1/x)
f(xn) = (1/nπ)p sin (nπ)
f(yn) = (1/(2n + 1/2)π)p sin ((2n + 1/2)π)
lim (n-->∞) xn=0
lim (n-->∞) f(xn)=0
We have lim (n-->∞) xn=lim (n-->∞) f(xn)=0 so the lim (x-->0+) xp sin (1/x)=0
Not too sure about this conclusion either...
p>0
Using the squeezing theorem:
-1<sin(1/x)<1
-xp<xpsin(1/x)<xp
So if we have:
lim (x-->0+) xp=0
lim (x-->0+) -xp=0
Then, lim (x-->0+) xp=lim (x-->0+) -xp=lim (x-->0+) -xpsin(1/x)=0
Thanks in advance!