Find the wave function of a particle in a spherical cavity

AI Thread Summary
The discussion focuses on finding the wave function of a particle in a spherical cavity defined by specific boundary conditions. The potential is described as infinite inside the radius a and outside the radius R, with zero potential in between. The solution to the Schrödinger equation yields a wave function that vanishes at the boundaries, leading to the form $$\psi=\frac{N}{r}sin\Big(\frac{n\pi}{R-a}(r-a)\Big)$$. The parameter $$\alpha$$ is determined to be $$\frac{n\pi}{R-a}$$, which satisfies the boundary conditions. The energy levels are expressed as $$E=\frac{n^2\pi^2\hbar^2}{2m(R-a)^2}$$, confirming the correctness of the derived equations.
docnet
Messages
796
Reaction score
488
Homework Statement
psb
Relevant Equations
psb
Screen Shot 2021-02-27 at 4.52.18 PM.png
Screen Shot 2021-02-27 at 4.52.24 PM.png


(a) Let the center of the concentric spheres be the origin at ##r=0##, where r is the radius defined in spherical coordinates. The potential is given by the piece-wise function
$$V(r)=\infty, r<a$$
$$V(r)=0, a<r<R$$
$$V(r)=\infty, r<a$$
(b) we solve the Schrodinger equation and obtain
$$\psi(r)=C_1cos(\alpha r)+C_2sin(\alpha r)$$
we look for a wavefunction ##\psi(r)## that vanishes at $$r=a$$ and $$r=R$$
(c) we take $$sin(\alpha r)$$ and do a change of variables that translates ##\psi## by ##a## in the negative ##r## direction $$r=\hat{r}-a$$ We solve for an ##α## that solves the Schrodinger equation as well as the boundary condition at ##r=R##. After making adjustments by trial and error we find
$$\alpha=\frac{n\pi}{R-a}$$
$$\psi=Nsin\Big(\frac{n\pi}{R-a}(r-a)\Big)$$
$$E=\frac{n^2\pi^2\hbar^2}{2m(R-a)^2}$$
 
Physics news on Phys.org
docnet said:
(a) Let the center of the concentric spheres be the origin at ##r=0##, where r is the radius defined in spherical coordinates. The potential is given by the piece-wise function
$$V(r)=\infty, r<a$$ $$V(r)=0, a<r<R$$ $$V(r)=\infty, r<a$$
The first and third equations above are identical.

(b) we solve the Schrodinger equation and obtain
$$\psi(r)=C_1cos(\alpha r)+C_2sin(\alpha r)$$
Should the left-hand side be ##U(r)## rather than ##\psi(r)##?
 
Thank u! Re-try:

Screen Shot 2021-02-28 at 4.38.21 PM.png


(a) Let the center of the concentric spheres be the origin at ##r=0##, where r is the radius defined in spherical coordinates. The potential is given by the piece-wise function
$$V(r)=\infty, r<a$$
$$V(r)=0, a<r<R$$
$$V(r)=\infty, R<r$$
(b) we solve the Schrodinger equation and obtain
$$U(r)=C_1cos(\alpha r)+C_2sin(\alpha r)$$
we look for a wavefunction ##U(r)## that vanishes at $$r=a$$ and $$r=R$$
(c) we take $$sin(\alpha r)$$ and do a change of variables that translates ##\psi## by ##a## in the negative ##r## direction $$r=\hat{r}-a$$ We solve for an ##α## that solves the Schrodinger equation as well as the boundary condition at ##r=R##. After making adjustments by trial and error we find
$$\alpha=\frac{n\pi}{R-a}$$
$$\psi=\frac{U(r)}{r}=\frac{N}{r}sin\Big(\frac{n\pi}{R-a}(r-a)\Big)$$
$$E=\frac{n^2\pi^2\hbar^2}{2m(R-a)^2}$$
 
Your work looks correct to me.
 
:bow:
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top