- #1
Blandongstein
- 9
- 0
Let $f$ be a continuous function for $x \in (0,1]$ and $\displaystyle g(x)=\int_{1}^{1 \over x}\frac{1}{t}f\left( \frac{1}{t}\right)dt$, then find the value of
$$ \int_0^1 (f(x)-g(x))dx$$
$$ \int_0^1 (f(x)-g(x))dx$$