MHB Find $\vec{AC}.\vec{AB}$ in Rectangle $ABCD$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Rectangle
Albert1
Messages
1,221
Reaction score
0
Rectangle $ABCD$ given :$\angle CAB=30^o$ ,and $\vec{AC}.\vec{AD}=\mid\vec{AC}\,\, \mid$

please find the value of :$\vec{AC}.\vec{AB}$
 
Mathematics news on Phys.org
$$\vec{AC}\cdot\vec{AD}=|\vec{AC}||\vec{AD}|\cos(60)=\frac12|\vec{AC}||\vec{AD}|=|\vec{AC}|\implies|\vec{AD}|=2$$

$$|\vec{AC}|\cos(60)=2\implies|\vec{AC}|=4\implies|\vec{AB}|=\sqrt{12}$$

$$\vec{AC}\cdot\vec{AB}=4\sqrt{12}\cos(30)=12$$
 
greg1313 said:
$$\vec{AC}\cdot\vec{AD}=|\vec{AC}||\vec{AD}|\cos(60)=\frac12|\vec{AC}||\vec{AD}|=|\vec{AC}|\implies|\vec{AD}|=2$$

$$|\vec{AC}|\cos(60)=2\implies|\vec{AC}|=4\implies|\vec{AB}|=\sqrt{12}$$

$$\vec{AC}\cdot\vec{AB}=4\sqrt{12}\cos(30)=12$$
good ! your answer is correct
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top