Find Vol Bound by $x_2 =\frac{y+1}{2}$ & $x_1=y^2$

  • MHB
  • Thread starter karush
  • Start date
  • Tags
    Bound
In summary, the volume bound by $x_2 =\frac{y+1} {2} $ and $x_1=y^2$ is equal to $\frac{9}{16}$, as found through integration and arithmetic.
  • #1
karush
Gold Member
MHB
3,269
5
Find volume bound by $x_2 =\frac{y+1} {2} $ and $x_1=y^2$
$\int_{-{\frac{1}{2}}}^{1} (-{y}^{2 }+\frac{y}{2}+\frac{1}{2}) \,dx$
$
\begin{array}{l}
{{\left[{\frac{{y}^{2}}{2}\mathrm{{+}}\frac{y}{4}\mathrm{{-}}\frac{{y}^{3}}{3}}\right]}_{\mathrm{{-}}{1}{\mathrm{/}}{2}}^{1}}\\
{\left[{\frac{\frac{1}{4}}{2}\mathrm{{-}}\frac{\frac{1}{2}}{4}\mathrm{{+}}\frac{\frac{1}{8}}{3}}\right]\mathrm{{-}}\left[{\frac{1}{4}\mathrm{{+}}\frac{1}{2}\mathrm{{-}}\frac{1}{3}}\right]}\\
{\left[{\frac{3}{\mathrm{48}}\mathrm{{-}}\frac{\mathrm{12}}{\mathrm{48}}\mathrm{{+}}\frac{2}{\mathrm{48}}}\right]\mathrm{{-}}\left[{\frac{\mathrm{12}}{\mathrm{48}}\mathrm{{+}}\frac{\mathrm{24}}
{\mathrm{48}}\mathrm{{-}}\frac{\mathrm{16}}{\mathrm{48}}}\right]}
\end{array}$
$$
\frac{5}{12 }+\frac{7}{48 }=\frac{9}{16}
$$
Thot I would try mathmajic but better to stay here😁
 
Last edited:
Physics news on Phys.org
  • #2
karush said:
Find volume bound by $x_2 =\frac{y+1} {2} $ and $x_1=y^2$
$\int_{-{\frac{1}{2}}}^{1} (-{y}^{2 }+\frac{y}{2}+\frac{1}{2}) \,dx$
$
\begin{array}{l}
{{\left[{\frac{{y}^{2}}{2}\mathrm{{+}}\frac{y}{4}\mathrm{{-}}\frac{{y}^{3}}{3}}\right]}_{\mathrm{{-}}{1}{\mathrm{/}}{2}}^{1}}\\
{\left[{\frac{\frac{1}{4}}{2}\mathrm{{-}}\frac{\frac{1}{2}}{4}\mathrm{{+}}\frac{\frac{1}{8}}{3}}\right]\mathrm{{-}}\left[{\frac{1}{4}\mathrm{{+}}\frac{1}{2}\mathrm{{-}}\frac{1}{3}}\right]}\\
{\left[{\frac{3}{\mathrm{48}}\mathrm{{-}}\frac{\mathrm{12}}{\mathrm{48}}\mathrm{{+}}\frac{2}{\mathrm{48}}}\right]\mathrm{{-}}\left[{\frac{\mathrm{12}}{\mathrm{48}}\mathrm{{+}}\frac{\mathrm{24}}
{\mathrm{48}}\mathrm{{-}}\frac{\mathrm{16}}{\mathrm{48}}}\right]}
\end{array}$
$$
\frac{5}{12 }+\frac{7}{48 }=\frac{9}{16}
$$
Thot I would try mathmajic but better to stay here😁

9/16 is correct. Well done.
 
  • #3
It's the arithmetic that kills on these integrals
 

FAQ: Find Vol Bound by $x_2 =\frac{y+1}{2}$ & $x_1=y^2$

What does the equation $x_2 =\frac{y+1}{2}$ & $x_1=y^2$ represent?

The equation represents a boundary between two variables, $x_2$ and $x_1$, where $x_2$ is equal to half of $y+1$ and $x_1$ is equal to $y^2$.

How do you find the boundary represented by this equation?

To find the boundary, you can plot the points on a graph using different values for $y$. This will create a curved line that represents the boundary between $x_2$ and $x_1$.

What is the significance of the variables $x_2$ and $x_1$ in this equation?

The variables $x_2$ and $x_1$ represent two different quantities or measurements that are related to each other by the equation. In this case, $x_2$ is dependent on the value of $y$, while $x_1$ is dependent on the square of $y$.

Can this equation be used to solve for a specific value of $y$?

Yes, the equation can be rearranged to solve for a specific value of $y$. For example, if we have a given value for $x_2$, we can plug it into the equation to solve for the corresponding value of $y$.

How can this equation be applied in real-life situations?

This equation can be applied in various fields such as physics, engineering, and economics. It can be used to represent relationships between different variables, and to analyze and predict outcomes in different scenarios.

Similar threads

Back
Top