Finding a formula for displacement of a mass on a spring using v.

AI Thread Summary
The discussion revolves around deriving the formula for displacement of a mass on a spring using velocity. The user starts with the energy conservation equation 1/2mv^2 = 1/2kx^2 and derives v^2 = mg^2/k but struggles to progress further. Key insights include the distinction between vertical and horizontal spring systems, emphasizing that at equilibrium, x=0 and v equals the maximum velocity. The conversation highlights that there is no standard equation for this scenario, but references to energy conservation principles are made. Ultimately, the focus is on finding the maximal displacement from the equilibrium position, also known as amplitude.
hamishmidd
Messages
1
Reaction score
0
Homework Statement
A mass m is hung from a spring with spring constant k. The mass is kicked upwards such
that it has a speed of v when the mass is at the equilibrium position. What is the maximal displacement of the mass from the equilibrium position as the mass subsequently
oscillates?
Relevant Equations
Ek=1/2mv^2, U=1/2kx^2, kx=mg (at equilibrium position)
I have tried to answer this using the relevant equations I am provided on my formula sheet, however I get stuck pretty close to the end. I start with 1/2mv^2=1/2kx^2 at the equilibrium position, and kx=mg, x=mg/k. This gets me to v^2=mg^2/k, but I don't know where to go from there. The potential answers are:
(A) x = v*sqrt(m/k) (B) x =v^2/2g (C) x =sqrt(2mv/k) (D) x = vt +1/2gt^2 (E) None of the above
 
Physics news on Phys.org
A vertical spring-mass system oscillates about its equilibrium position exactly like a horizontal spring-mass system. The only difference is that the vertical spring is at equilibrium when the spring is stretched by ##\Delta x=mg/k## whilst the horizontal spring is not stretched at equilibrium.

Answer this question as if you had a horizontal spring. Note that you are asked to find the maximal displacement from the equilibrium position. What is another name for it?
 
hamishmidd said:
I start with 1/2mv^2=1/2kx^2 at the equilibrium position,
Further to @kuruman's advice, I'll point out that there is no such standard equation.
There's ##1/2mv_{max}^2=1/2kx_{max}^2##, and there's ##1/2mv^2(t)+1/2kx^2(t)=E##, where x is displacement from equilibrium.
At equilibrium, ##x=0, v=v_{max}##.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top