- #1
cbarker1
Gold Member
MHB
- 349
- 23
Dear Everyone,
I am having trouble with finding a formula of the multiplication 3 formula power series.
\[ \left(\sum_{n=0}^{\infty} a_nx^n \right)\left(\sum_{k=0}^{\infty} b_kx^k \right)\left(\sum_{m=0}^{\infty} c_mx^m \right) \]
Work:
For the constant term:
$a_0b_0c_0$
For The linear term : $(a_1 b_0 c_0 + a_0 b_1 c_0 + a_0 b_0 c_1)x$ + $a_0b_0c_0$
For the quadratic term: $a_2 b_2 c_2 x^6 + a_2 b_2 c_1 x^5 + a_2 b_1 c_2 x^5 + a_1 b_2 c_2 x^5 + a_2 b_2 c_0 x^4 + a_2 b_1 c_1 x^4 + a_1 b_2 c_1 x^4 + a_2 b_0 c_2 x^4 + a_1 b_1 c_2 x^4 + a_0 b_2 c_2 x^4 + a_2 b_1 c_0 x^3 + a_1 b_2 c_0 x^3 + a_2 b_0 c_1 x^3 + a_1 b_1 c_1 x^3 + a_0 b_2 c_1 x^3 + a_1 b_0 c_2 x^3 + a_0 b_1 c_2 x^3 + a_2 b_0 c_0 x^2 + a_1 b_1 c_0 x^2 + a_0 b_2 c_0 x^2 + a_1 b_0 c_1 x^2 + a_0 b_1 c_1 x^2 + a_0 b_0 c_2 x^2 + a_1 b_0 c_0 x + a_0 b_1 c_0 x + a_0 b_0 c_1 x + a_0 b_0 c_0$
I am seeing that the indexes are summing up to the power of x. But how to say that in the indexes?
Thanks,
Cbarker1
I am having trouble with finding a formula of the multiplication 3 formula power series.
\[ \left(\sum_{n=0}^{\infty} a_nx^n \right)\left(\sum_{k=0}^{\infty} b_kx^k \right)\left(\sum_{m=0}^{\infty} c_mx^m \right) \]
Work:
For the constant term:
$a_0b_0c_0$
For The linear term : $(a_1 b_0 c_0 + a_0 b_1 c_0 + a_0 b_0 c_1)x$ + $a_0b_0c_0$
For the quadratic term: $a_2 b_2 c_2 x^6 + a_2 b_2 c_1 x^5 + a_2 b_1 c_2 x^5 + a_1 b_2 c_2 x^5 + a_2 b_2 c_0 x^4 + a_2 b_1 c_1 x^4 + a_1 b_2 c_1 x^4 + a_2 b_0 c_2 x^4 + a_1 b_1 c_2 x^4 + a_0 b_2 c_2 x^4 + a_2 b_1 c_0 x^3 + a_1 b_2 c_0 x^3 + a_2 b_0 c_1 x^3 + a_1 b_1 c_1 x^3 + a_0 b_2 c_1 x^3 + a_1 b_0 c_2 x^3 + a_0 b_1 c_2 x^3 + a_2 b_0 c_0 x^2 + a_1 b_1 c_0 x^2 + a_0 b_2 c_0 x^2 + a_1 b_0 c_1 x^2 + a_0 b_1 c_1 x^2 + a_0 b_0 c_2 x^2 + a_1 b_0 c_0 x + a_0 b_1 c_0 x + a_0 b_0 c_1 x + a_0 b_0 c_0$
I am seeing that the indexes are summing up to the power of x. But how to say that in the indexes?
Thanks,
Cbarker1