- #1
Yankel
- 395
- 0
Hello,
I have this simple problem:
f(x) and g(x) are both differentiable. f is monotonically increasing for every x. g has a local min at x=0. we define h to be h(x)=f(g(x)).
Can we say anything about x=0 for h(x) ?
I used the chain rule to find that h'(x) = f'(g(x))*g'(x). at x=0 g'(x)=0, so h'(0) = 0 as well. is it possible to say if x=0 is min, max, or isn't is possible ?
thank you in advance.
I have this simple problem:
f(x) and g(x) are both differentiable. f is monotonically increasing for every x. g has a local min at x=0. we define h to be h(x)=f(g(x)).
Can we say anything about x=0 for h(x) ?
I used the chain rule to find that h'(x) = f'(g(x))*g'(x). at x=0 g'(x)=0, so h'(0) = 0 as well. is it possible to say if x=0 is min, max, or isn't is possible ?
thank you in advance.