Finding a rocket's speed at height h

  • Thread starter Thread starter meghanflowers
  • Start date Start date
  • Tags Tags
    Height Speed
AI Thread Summary
The discussion focuses on calculating a rocket's final speed at height h, starting from rest with thrust Fthrust. The initial approach incorrectly neglects gravitational acceleration, leading to an incomplete equation for net force. The correct formula should incorporate both thrust and gravitational force, as the rocket's acceleration is affected by gravity. Additionally, the change in mass of the rocket during ascent is not accounted for, which is crucial for accurate calculations. Overall, including gravitational acceleration and considering mass changes are essential for deriving the correct expression for the rocket's speed.
meghanflowers
Messages
1
Reaction score
0
Homework Statement
A rocket of mass m is launched straight up with thrust Fthrust.
Find an expression for the rocket's speed at height h if air resistance is neglected.
Express your answer in terms of the variables Fthrust , m , h , and appropriate constants.
Relevant Equations
vfs^2=vis^2+2Δs
a=F/m
I substituted 0 for vi, as the rocket is initially stopped.
I am looking for Vf.
So:
Vf^2=0+2asΔs
Vf^2=2asΔs

I then substituted a=Fthrust/m

So:
Vf^2=2(Fthrust/m)Δs
Δs at any given moment equals h so I substituted h for Δs.
Then took the square root of both sides.
Vf=sqrt(2h(Fthrust/m))

It says it is wrong, and that the correct answer includes the gravitational acceleration constant(g).
I am really stuck. Thanks for helping!
 
Physics news on Phys.org
Welcome to PF. :smile:

It does look like you have not included the downward force due to gravity in your net force equation. Can you try including it?

Also, see the LaTeX Guide link below the Edit window to learn how best to post math equations at PF. :smile:
 
meghanflowers said:
Homework Statement:: A rocket of mass m is launched straight up with thrust Fthrust.
Find an expression for the rocket's speed at height h if air resistance is neglected.
Express your answer in terms of the variables Fthrust , m , h , and appropriate constants.
Relevant Equations:: vfs^2=vis^2+2Δs
a=F/m

I substituted 0 for vi, as the rocket is initially stopped.
I am looking for Vf.
So:
Vf^2=0+2asΔs
Vf^2=2asΔs

I then substituted a=Fthrust/m

So:
Vf^2=2(Fthrust/m)Δs
Δs at any given moment equals h so I substituted h for Δs.
Then took the square root of both sides.
Vf=sqrt(2h(Fthrust/m))

It says it is wrong, and that the correct answer includes the gravitational acceleration constant(g).
I am really stuck. Thanks for helping!
Big hint: Start by sketching a Free Body Diagram of the rocket.

-Dan
 
This is also ignoring the change in mass of the rocket as it ascends.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top