- #1
skrat
- 748
- 8
Homework Statement
Find a solution of the system ##{x}'''=2x+y## and ##{y}'''=x+2y## for which ##x(0)={x}'(0)=0## and ##{x}''(0)=1## also for ##y(0)={y}'(0)=0## and ##{y}''(0)=1##.
Homework Equations
The Attempt at a Solution
I must be doing something wrong:
##\begin{bmatrix}
{x}'''\\
{y}'''
\end{bmatrix}=\begin{bmatrix}
2 & 1\\
1&2
\end{bmatrix}\begin{bmatrix}
x\\
y
\end{bmatrix}##
Eigenvalues are ##\lambda _1=1## and ##\lambda _2=3## so eigenvectors ##v_1=(-1,1)## and ##v_2=(1,1)##.
Therefore matrix ##D=\begin{bmatrix}
1 & 0\\
0& 3
\end{bmatrix}## and matrix ##P=\begin{bmatrix}
-1 & 1\\
1&1
\end{bmatrix}##
So general solution should be ##\begin{bmatrix}
x\\
y
\end{bmatrix}=Pe^{Dx}\vec{c}=\begin{bmatrix}
-1 & 1\\
1&1
\end{bmatrix}\begin{bmatrix}
e^x & 0\\
0& e^{3x}
\end{bmatrix}\begin{bmatrix}
A\\
B
\end{bmatrix}##
But all these conditions ##x(0)={x}'(0)=0## and ##{x}''(0)=1## also for ##y(0)={y}'(0)=0## and ##{y}''(0)=1##... What do I do? :/
Thank you for your help!