- #1
shen07
- 54
- 0
consider the following LMM
$$y_n-\frac{3}{2}y_{n-1}+\frac{1}{2}y_{n-2}=h(\frac{1}{2}f_n+\frac{1}{4}f_{n-1}-\frac{1}{4}f_{n-2})$$
which is applied to the initial value problem $$y'(t)=y(t),0\leq{t}\leq{1}\\ and\\ y(0)=1$$
How do i find an expression for $$y_n$$, if the starting values are $$y_0=1\\ and\\ y_1=1$$
$$y_n-\frac{3}{2}y_{n-1}+\frac{1}{2}y_{n-2}=h(\frac{1}{2}f_n+\frac{1}{4}f_{n-1}-\frac{1}{4}f_{n-2})$$
which is applied to the initial value problem $$y'(t)=y(t),0\leq{t}\leq{1}\\ and\\ y(0)=1$$
How do i find an expression for $$y_n$$, if the starting values are $$y_0=1\\ and\\ y_1=1$$