- #1
brotherbobby
- 702
- 163
- Homework Statement
- Calculate the area of the segment of the circle shown in the figure below, shaded in red.
- Relevant Equations
- 1. The area of the sector of a circle that subtends an angle of ##\theta^{\circ}## at the center is ##A = \dfrac{\theta^{\circ}}{360^{\circ}}\times\pi r^2 ##
2. The cosine of an angle ##\theta## in a right angled triangle : ##\cos\theta = \dfrac{\text{Adjacent}}{\text{Hypotenuse}}##
3. Area of a triangle : ##A = \dfrac{1}{2}\times\; \text{base}\; \times\; \text{height}##.
4. The equation of a circle of radius ##a## : ##y(x) = \sqrt{a^2-x^2}##.
5. The area that a function ##f(x)## subtends with the horizontal from ##x_1\rightarrow x_2## is given by ##A = \int_{x_1}^{x_2} f(x) dx##.
5. ##\int\sqrt{a^2-x^2} = \dfrac{x}{2}\sqrt{a^2-x^2}+\dfrac{a^2}{2}\sin^{-1}\dfrac{x}{a}##
Attempt 1 (without calculus): I mark some relevant lengths inside the circle, shown left. Clearly OS = 9 cm and SP = 12 cm using the Pythagorean theorem. The angle ##\theta = \angle \mathbf{SOP}## (##=\angle\mathbf{SOR}##) can be found : ##\theta=\cos^{-1}\frac{9}{15}\approx 53^{\circ}##. Hence the total angle ROP : ##2\theta \approx 106^{\circ}##. The area of the sector ORQPO : ##A_{\text{sect}}= \dfrac{106^{\circ}}{360^{\circ}}\times \pi \times 15^2 = 208.1\;\text{cm}^2##. The area of the full triangle ROP : ##A_{\text{tri}} = \dfrac{1}{2}\times\;\text{24 cm}\;\times\;\text{9 cm} = 108\;\text{cm}^2##. Hence the area of the segment RSPQR shaded in red : ##A_{\text{seg}}= 208.1-108\approx \boxed{100\;\text{cm}^2}##.
$$A_{\text{arc}}= \int_0^{12} \sqrt{15^2-x^2}dx= \left|\dfrac{x}{2}\sqrt{15^2-x^2}\right|_0^{12}+\left|\dfrac{15^2}{2}\sin^{-1}\dfrac{x}{15}\right|_0^{12}$$
$$ A_{\text{arc}} = 6\sqrt{15^2-12^2}+\dfrac{15^2}{2}\times\underbrace{\sin^{-1}\dfrac{4}{5}}_{\text{to be evaluated in radians}}$$
$$A_{\text{arc}} = 158.32\;\text{cm}^2\;!$$
The area under the arc cannot be more than the area of the (larger) rectangle = 72 cm^2. Where am I mistaken in calculating my integral?
A hint or suggestion is welcome.