- #1
ognik
- 643
- 2
I think I'm a bit rusty here, started with finding poles for $ \frac{1}{{z^4}+4} $, {z: |z-1| LE 2}
1) Out of interest, is there a complex equivalent of the rational roots test? The above function is obvious, but for a poly that has both real and complex roots?
2) I am using the exponential form to find roots, ie for n roots, $ {z}_{k+1} = r^{-n}e^{i(\frac{\theta}{n} + k\frac{2\pi}{n})}, k=0,\pm1,\pm2...\pm(n-1) $ - is this formula correct? Is there a better way?
3) Using the above, $ (\theta = 0) $, I get the 4 poles to be $ {z}_{k+1} = \sqrt{2}e^{i( k\frac{2\pi}{n})} = \pm\sqrt{2}, \pm\sqrt{2}i $, but the answer given is $ \pm1 \pm i $, can anyone see what I'm doing wrong?
1) Out of interest, is there a complex equivalent of the rational roots test? The above function is obvious, but for a poly that has both real and complex roots?
2) I am using the exponential form to find roots, ie for n roots, $ {z}_{k+1} = r^{-n}e^{i(\frac{\theta}{n} + k\frac{2\pi}{n})}, k=0,\pm1,\pm2...\pm(n-1) $ - is this formula correct? Is there a better way?
3) Using the above, $ (\theta = 0) $, I get the 4 poles to be $ {z}_{k+1} = \sqrt{2}e^{i( k\frac{2\pi}{n})} = \pm\sqrt{2}, \pm\sqrt{2}i $, but the answer given is $ \pm1 \pm i $, can anyone see what I'm doing wrong?