- #1
Petrus
- 702
- 0
Hello MHB,
I am pretty new with this serie I am supposed to find convergent or divergent.
\(\displaystyle \sum_{k=1}^\infty[\ln(1+\frac{1}{k})]\)
progress:
\(\displaystyle \sum_{k=1}^\infty[\ln(1+\frac{1}{k})]= \sum_{k=1}^\infty [\ln(\frac{k+1}{k})] = \sum_{k=1}^\infty[\ln(k+1)-\ln(k)]\) so we got that
\(\displaystyle \lim_{n->\infty}(\ln(2)-\ln(1))+\)\(\displaystyle (\ln(3)-\ln(2))+...+(\ln(n+1)-\ln(n))\)
and this is where I am stuck
Regards,
\(\displaystyle |\pi\rangle\)
I am pretty new with this serie I am supposed to find convergent or divergent.
\(\displaystyle \sum_{k=1}^\infty[\ln(1+\frac{1}{k})]\)
progress:
\(\displaystyle \sum_{k=1}^\infty[\ln(1+\frac{1}{k})]= \sum_{k=1}^\infty [\ln(\frac{k+1}{k})] = \sum_{k=1}^\infty[\ln(k+1)-\ln(k)]\) so we got that
\(\displaystyle \lim_{n->\infty}(\ln(2)-\ln(1))+\)\(\displaystyle (\ln(3)-\ln(2))+...+(\ln(n+1)-\ln(n))\)
and this is where I am stuck
Regards,
\(\displaystyle |\pi\rangle\)