A Finding dual optimum of a linear problem

  • A
  • Thread starter Thread starter Trollfaz
  • Start date Start date
  • Tags Tags
    Linear programming
AI Thread Summary
The discussion focuses on finding the dual optimum of a linear problem defined by affine constraints. The Lagrangian function is derived as c'x + λ'(Dx-e) when constraints are transformed. By differentiating the Lagrangian with respect to x, it is established that c = -D'λ. The dual function g(λ) is then expressed as -λ.e, leading to the conclusion that d* equals the supremum of g(λ). The query raised is whether this differentiation method yields the dual optimum for all convex inequality constraints and convex objective functions.
Trollfaz
Messages
143
Reaction score
14
A simple linear problem goes
min c'x such that f_i(x)<= 0 and Ax=b
x
Suppose we make all constraints affine. Then

Dx-e<=0 and Ax-b =0
We get the Langrangian function as
c'x + λ'(Dx-e) +ν'(Ax-b) and since Ax-b is 0,
we reduce L to
c'x + λ'(Dx-e)
The dual function g is
inf L(x,λ)
x
Then I differentiate L against x to get c=-D'λ
With that we get g(λ) as -λ.e
So I conclude that d*=sup g(λ) against λ.
Does differentiation of the Lagrangian function give me the dual optimum and does it work for all convex inequality constraints and convex objective functions?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top