- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to find the equilibrium solutions and determine their stability.
$(1)\left\{\begin{matrix}
\dot{x}=-y-x(1-\sqrt{x^2+y^2})^2\\
\dot{y}=x-y(1-\sqrt{x^2+y^2})^2
\end{matrix}\right.$
I also want to check the behavior of the solutions of $(1)$ when $t \to \infty$. There are four possible answers.
$\dot{x}=0 \Rightarrow -y-x (1-\sqrt{x^2+y^2})^2=0 (\star)$
and
$\dot{y}=0 \Rightarrow x-y (1-\sqrt{x^2+y^2})^2=0 \Rightarrow x=y(1-\sqrt{x^2+y^2})^2$
$(\star): -y-y(1-\sqrt{x^2+y^2})^4=0 \Rightarrow y=0 \text{ or } 1+(1-\sqrt{x^2+y^2})^4=0, \text{ which is rejected}$.
So $y=0$ and $x=0$.So $(0,0)$ is the only equilibrium solution.
If we set $f_1(x,y)=-y-x(1-\sqrt{x^2+y^2})^2$ and $f_2(x)=x-y(1-\sqrt{x^2+y^2})^2$, then we have
$\frac{\partial{f}}{\partial{x}}=-(1-\sqrt{x^2+y^2})^2+\frac{2x^2(1-\sqrt{x^2+y^2})}{\sqrt{x^2+y^2}}$.Is this right?
Because in order to determine the stability, we compute the Jacobi matrix at the equilibrium solution, but $\frac{\partial{f}}{\partial{x}}(0,0)$ is not defined.
Am I doing something wrong? (Thinking)
I want to find the equilibrium solutions and determine their stability.
$(1)\left\{\begin{matrix}
\dot{x}=-y-x(1-\sqrt{x^2+y^2})^2\\
\dot{y}=x-y(1-\sqrt{x^2+y^2})^2
\end{matrix}\right.$
I also want to check the behavior of the solutions of $(1)$ when $t \to \infty$. There are four possible answers.
- there exists exactly one equilibrium solution and it is asymptotically stable. Furthermore, $\forall$ solution $(x,y)$ of $(1)$ we have that $\lim x(t)=x_0$ and $\lim y(t)=y_0$ where $(x_0,y_0)$ equilibrium solution.
- there exists exactly one equilibrium solution and it is asymptotically stable. Furthermore, $\forall$ solution $(x,y)$ of $(1)$ we have that $\lim x(t) \neq x_0$ and $\lim y(t) \neq y_0$ where $(x_0,y_0)$ equilibrium solution.
- $\exists$ exactly one equilibrium solution and it is stable but not asymptotically stable. Also $\forall$ solution $(x,y) \neq (x_0, y_0)$ of $(1)$ we have that $\lim x(t) \neq x_0$ and $\lim y(t) \neq y_0$ where $(x_0,y_0)$ is the equilibrium solution.
- $\exists$ exactly one equilibrium solution and it is stable but not asymptotically stable. Also $\forall$ solution $(x,y) \neq (x_0, y_0)$ of $(1)$ with $x^2(0)+y^2(0)>1$ we have that $x^2(t)+y^2(t) \geq 1$.
- $\exists$ exactly one equilibrium solution and it is unstable. $\forall$ other solution $(x,y)$ of $(1)$ we have that $\lim (x^2(t)+y^2(t))=1$.
$\dot{x}=0 \Rightarrow -y-x (1-\sqrt{x^2+y^2})^2=0 (\star)$
and
$\dot{y}=0 \Rightarrow x-y (1-\sqrt{x^2+y^2})^2=0 \Rightarrow x=y(1-\sqrt{x^2+y^2})^2$
$(\star): -y-y(1-\sqrt{x^2+y^2})^4=0 \Rightarrow y=0 \text{ or } 1+(1-\sqrt{x^2+y^2})^4=0, \text{ which is rejected}$.
So $y=0$ and $x=0$.So $(0,0)$ is the only equilibrium solution.
If we set $f_1(x,y)=-y-x(1-\sqrt{x^2+y^2})^2$ and $f_2(x)=x-y(1-\sqrt{x^2+y^2})^2$, then we have
$\frac{\partial{f}}{\partial{x}}=-(1-\sqrt{x^2+y^2})^2+\frac{2x^2(1-\sqrt{x^2+y^2})}{\sqrt{x^2+y^2}}$.Is this right?
Because in order to determine the stability, we compute the Jacobi matrix at the equilibrium solution, but $\frac{\partial{f}}{\partial{x}}(0,0)$ is not defined.
Am I doing something wrong? (Thinking)