- #1
SclayP
- 27
- 0
The problem statement says to find out if the next series converge, and if it does to calculate the sum with an error [tex]ε< 10^{-3}[/tex]
The serie is this one
[itex]\sum^{\infty}_{n=1} (-1)^nne^{-n}[/itex]
First of all the serie converges because of Leibniz Criterion but the i did the series of |an|
I did it with Cauchy Criterion and the seris converges again...
[itex]\sum_{n=1}^{\infty} \frac{n}{e^{-n}}[/itex]
[tex]\lim_{n \rightarrow +\infty} \frac{\sqrt[n]{n}}{\sqrt[n]{e^n}}[/tex]
[tex]\lim_{n \rightarrow +\infty} \frac{\sqrt[n]{n}}{e}[/tex]
[tex]\frac{1}{e}<1[/tex]
Now i have to find the error and that i don't know how to do it..
Thank.
The serie is this one
[itex]\sum^{\infty}_{n=1} (-1)^nne^{-n}[/itex]
First of all the serie converges because of Leibniz Criterion but the i did the series of |an|
I did it with Cauchy Criterion and the seris converges again...
[itex]\sum_{n=1}^{\infty} \frac{n}{e^{-n}}[/itex]
[tex]\lim_{n \rightarrow +\infty} \frac{\sqrt[n]{n}}{\sqrt[n]{e^n}}[/tex]
[tex]\lim_{n \rightarrow +\infty} \frac{\sqrt[n]{n}}{e}[/tex]
[tex]\frac{1}{e}<1[/tex]
Now i have to find the error and that i don't know how to do it..
Thank.
Last edited by a moderator: