- #1
sbhatnagar
- 87
- 0
Let $f:[1,\infty)\to [2,\infty)$ be a differentiable function such that $f(1)=2$. If
$$ 6\int_{1}^{x} f(t)\, dt+5=3x \, f(x)-x^3$$
for all $x \geq 1$, then:
1) Find the value of $f(2)$.
2) Find $\mathcal{L} \{ f(t)\}$.
$$ 6\int_{1}^{x} f(t)\, dt+5=3x \, f(x)-x^3$$
for all $x \geq 1$, then:
1) Find the value of $f(2)$.
2) Find $\mathcal{L} \{ f(t)\}$.
Last edited: