- #1
noamriemer
- 50
- 0
Finding Geodesics
What I wish to understand, is how to solve this one:
given this metric:
[itex] ds^2= \frac {dt^2} {t^2}- \frac{dx^2} {t^2} [/itex]
I have to calculate the geodesics.
[itex] S=\int{ \frac {d} {d\lambda} \sqrt{\frac {1} {t^2} \frac {dt^2} {d\lambda^2}- \frac{1} {t^2} \frac {dx^2} {d\lambda^2}}} [/itex]
But [itex] \lambda [/itex] here, is any parameter I choose. Therefore, L does not depend on it (right? )
So now I want to use E-L equations:
[itex] \frac {d}{dλ}\frac {∂L}{∂\dot t}=\frac {\partial L} {∂t},
\frac {d} {dλ}\frac {∂L} {∂\dot x} =\frac {\partial L} {∂x} [/itex]
When [itex] \dot t [/itex] refers to [itex] \frac {dt} {d\lambda} [/itex] etc.
But here I get confused:
What does L depend on?
I'll continue my solution:
[itex]\frac {d} {dλ} 0.5 ({{\frac {{\dot t}^2} {t^2}-\frac {{\dot x}^2} {t^2}}})^{-0.5} 2 \frac {\dot t} {t^2}= \frac {\partial L} {\partial x} [/itex]
As I stated, L does not depend on lambda, and so:
[itex] \frac {d} {d\lambda} {[\frac {\dot t} {t^2}]}^2 = \frac {{\dot t}^2-{\dot x}^2} {t^3} [/itex]
So how am I supposed to derive this? Do I add another dot?
[itex] \frac {d} {d\lambda} \dot t = \ddot t [/itex] ? and do I refer to it as an operator? Meaning- [itex] \ddot t = {\dot t}^2? [/itex]
How do I continue? These calculations on classical mechanics were so trivial to me- but for some reason I get lost in here...
Thank you!
What I wish to understand, is how to solve this one:
given this metric:
[itex] ds^2= \frac {dt^2} {t^2}- \frac{dx^2} {t^2} [/itex]
I have to calculate the geodesics.
[itex] S=\int{ \frac {d} {d\lambda} \sqrt{\frac {1} {t^2} \frac {dt^2} {d\lambda^2}- \frac{1} {t^2} \frac {dx^2} {d\lambda^2}}} [/itex]
But [itex] \lambda [/itex] here, is any parameter I choose. Therefore, L does not depend on it (right? )
So now I want to use E-L equations:
[itex] \frac {d}{dλ}\frac {∂L}{∂\dot t}=\frac {\partial L} {∂t},
\frac {d} {dλ}\frac {∂L} {∂\dot x} =\frac {\partial L} {∂x} [/itex]
When [itex] \dot t [/itex] refers to [itex] \frac {dt} {d\lambda} [/itex] etc.
But here I get confused:
What does L depend on?
I'll continue my solution:
[itex]\frac {d} {dλ} 0.5 ({{\frac {{\dot t}^2} {t^2}-\frac {{\dot x}^2} {t^2}}})^{-0.5} 2 \frac {\dot t} {t^2}= \frac {\partial L} {\partial x} [/itex]
As I stated, L does not depend on lambda, and so:
[itex] \frac {d} {d\lambda} {[\frac {\dot t} {t^2}]}^2 = \frac {{\dot t}^2-{\dot x}^2} {t^3} [/itex]
So how am I supposed to derive this? Do I add another dot?
[itex] \frac {d} {d\lambda} \dot t = \ddot t [/itex] ? and do I refer to it as an operator? Meaning- [itex] \ddot t = {\dot t}^2? [/itex]
How do I continue? These calculations on classical mechanics were so trivial to me- but for some reason I get lost in here...
Thank you!
Last edited: