- #1
UrbanXrisis
- 1,196
- 1
Suppose distances are measured in lightyears and that the temperature T of a gaseous nebula is inversely proportional to the distance from a fixed point, which is the origin. The temperature 1 lightyear from the origin is 100 degrees celsius. Find the gradient of T at (x,y,z).
here's what I have:
[tex]d=\sqrt{x^2+y^2+z^2}=1[/tex]
[tex]d=x^2+y^2+z^2=1[/tex]
[tex]T=\frac{1}{x^2+y^2+z^2}[/tex]
so the gradient is:
[tex]T_x=-\frac{2x}{(x^2+y^2+z^2)^2}[/tex]
[tex]T_y=-\frac{2y}{(x^2+y^2+z^2)^2}[/tex]
[tex]T_z=-\frac{2z}{(x^2+y^2+z^2)^2}[/tex]
but this is not right, i where did I go wrong?
here's what I have:
[tex]d=\sqrt{x^2+y^2+z^2}=1[/tex]
[tex]d=x^2+y^2+z^2=1[/tex]
[tex]T=\frac{1}{x^2+y^2+z^2}[/tex]
so the gradient is:
[tex]T_x=-\frac{2x}{(x^2+y^2+z^2)^2}[/tex]
[tex]T_y=-\frac{2y}{(x^2+y^2+z^2)^2}[/tex]
[tex]T_z=-\frac{2z}{(x^2+y^2+z^2)^2}[/tex]
but this is not right, i where did I go wrong?