- #1
Captain1024
- 45
- 2
Homework Statement
Consider a LTI system defined by the following difference equation: ##\mathrm{y}[n]=-2x[n]+4x[n-1]-2x[n-2]##
a) Determine the impulse response of the system
b) Determine the frequency response of the system
Homework Equations
DTFT: ##\mathrm{x}[n]=\frac{1}{2\pi}\int_{\pi}^{-\pi} \mathrm{X}(e^{j\omega})e^{j\omega n} d\omega \ \longleftrightarrow \ \mathrm{X}(e^{j\omega})=\sum_{n=-\infty}^{\infty} \mathrm{x}[n]e^{-j\omega n}##
The Attempt at a Solution
I started by finding the frequency response:
##\mathrm{Y}(e^{j\omega})=-2\mathrm{X}(e^{j\omega})+4e^{-j\omega}\mathrm{X}(e^{j\omega})-2e^{-2j\omega}\mathrm{X}(e^{j\omega})##
##=\mathrm{X}(e^{j\omega})(-2+4e^{-j\omega}-2e^{-2j\omega})##
Frequency response ##\mathrm{H}(e^{j\omega})=-2+4e^{-j\omega}-2e^{-2j\omega}##
My work on impulse response:
##\mathrm{h}[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}(-2+4e^{-j\omega}-2e^{-2j\omega})e^{j\omega n}d\omega##
##=\frac{1}{2\pi}\int_{-\pi}^{\pi}-2e^{j\omega n}+4e^{-j\omega}e^{j\omega n}-2e^{-2j\omega}e^{j\omega n}d\omega##
##=\frac{1}{2\pi}\int_{-\pi}^{\pi}-2e^{j\omega n}+4e^{j\omega (n-1)}-2e^{j\omega (n-2)}d\omega##
I believe the answer is ##\mathrm{h}[n]=\{-2, 4, -2\}##. Am i overthinking how to arrive at the answer or am I on the right track?
-Captain1024