- #1
- 1,753
- 143
Homework Statement
Water flows into a nozzle at 3.00 m/s at a pressure of 1.31*105Pa. What should the ratio of input to output diameter be if the flow is to remain steady? What is the flow speed at the exit?
Homework Equations
[tex]
P_{{\rm{input}}} + \frac{{\rho v_{{\rm{input}}}^2 }}{2} = P_{{\rm{atmosphere}}} + \frac{{\rho v_{{\rm{output}}}^{\rm{2}} }}{2}
[/tex]
[tex]A_1 v_1 = A_2 v_2 [/tex]
The Attempt at a Solution
My first guess is to simply say that a 1:1 inpututput ratio with the water flowing out at the same speed as it flows in should do the trick. But that would be too easy. I guess that I'm to assume that the pressure outside is air pressure. If so, am I doing it right?
[tex]
\begin{array}{l}
P_{{\rm{input}}} + \frac{{\rho v_{{\rm{input}}}^2 }}{2} = P_{{\rm{atmosphere}}} + \frac{{\rho v_{{\rm{output}}}^{\rm{2}} }}{2} \\
\\
P_{{\rm{input}}} + \frac{{\rho v_{{\rm{input}}}^2 }}{2} - P_{{\rm{atmosphere}}} = \frac{{\rho v_{{\rm{output}}}^{\rm{2}} }}{2} \\
\\
\frac{{2\left( {P_{{\rm{input}}} + \frac{{\rho v_{{\rm{input}}}^2 }}{2} - P_{{\rm{atmosphere}}} } \right)}}{\rho } = v_{{\rm{output}}}^{\rm{2}} \\
\\
v_{{\rm{output}}}^{} = \sqrt {\frac{{2\left( {P_{{\rm{input}}} + \frac{{\rho v_{{\rm{input}}}^2 }}{2} - P_{{\rm{atmosphere}}} } \right)}}{\rho }} \\
\\
v_{{\rm{output}}}^{} = \sqrt {\frac{{2\left( {1.31 \times 10^5 \,{\rm{Pa}} + \frac{{\left( {1000\frac{{{\rm{kg}}}}{{{\rm{m}}^{\rm{3}} }}} \right)\left( {3.00\,{\rm{m/s}}^{\rm{2}} } \right)}}{2} - 101.325 \times 10^3 \,{\rm{Pa}}} \right)}}{{\left( {1000\frac{{{\rm{kg}}}}{{{\rm{m}}^{\rm{3}} }}} \right)}}} = 5.58{\rm{ m/s}} \\
\end{array}
[/tex]
[tex]\begin{array}{l}
A_1 v_1 = A_2 v_2 \\
\\
\frac{{A_1 }}{{A_2 }} = \frac{{v_2 }}{{v_1 }} = \frac{{3.00\;{\rm{m/s}}}}{{{\rm{5}}{\rm{.58}}\,{\rm{m/s}}}} = 0.5376 \\
\end{array}[/tex]