- #1
Jason4
- 28
- 0
I have:
$f_A=\lambda e^{-\lambda a}$
$f_B=\mu e^{-\mu b}$
I need to find the density for $C=\min(A,B)$
($A$ and $B$ are independent).
Is this correct or utterly wrong?
$f_C(c)=f_A(c)+f_B(c)-f_A(c)F_B(c)-F_A(c)f_B(c)$
$=\lambda e^{-\lambda c}+\mu e^{-\mu c}-\lambda e^{-\lambda c}(1-e^{-\mu c})-(1-e^{-\lambda c})\mu e^{-\mu c}$
$=\lambda e^{-\lambda c}e^{-\mu c}+\mu e^{-\lambda c}e^{-\mu c}$
$=2(\lambda+\mu)e^{-c(\lambda+\mu)}$
$f_A=\lambda e^{-\lambda a}$
$f_B=\mu e^{-\mu b}$
I need to find the density for $C=\min(A,B)$
($A$ and $B$ are independent).
Is this correct or utterly wrong?
$f_C(c)=f_A(c)+f_B(c)-f_A(c)F_B(c)-F_A(c)f_B(c)$
$=\lambda e^{-\lambda c}+\mu e^{-\mu c}-\lambda e^{-\lambda c}(1-e^{-\mu c})-(1-e^{-\lambda c})\mu e^{-\mu c}$
$=\lambda e^{-\lambda c}e^{-\mu c}+\mu e^{-\lambda c}e^{-\mu c}$
$=2(\lambda+\mu)e^{-c(\lambda+\mu)}$
Last edited: