- #1
tmt1
- 234
- 0
I have to find this:
$$\lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3}$$
So I do this:
$$\lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3} * \frac{\sqrt{6x + 14} + \sqrt{x+1}}{\sqrt{6x + 14} + \sqrt{x+1}}$$
The top part is easy since
$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) $$ is equal to $$a - b$$
So I have
$$\frac {5x- 14}{x\sqrt{6x+4} + x\sqrt{x+1} - 3\sqrt{6x+4} - 3\sqrt{x+1}} $$
From here I am lost.
$$\lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3}$$
So I do this:
$$\lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3} * \frac{\sqrt{6x + 14} + \sqrt{x+1}}{\sqrt{6x + 14} + \sqrt{x+1}}$$
The top part is easy since
$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) $$ is equal to $$a - b$$
So I have
$$\frac {5x- 14}{x\sqrt{6x+4} + x\sqrt{x+1} - 3\sqrt{6x+4} - 3\sqrt{x+1}} $$
From here I am lost.