- #1
kalish1
- 99
- 0
I would like to know if there is a general formula, and if so, what it is, for finding the $limsup$ and $liminf$ of a sequence of sets $A_n$ as $n\rightarrow \infty$.
I know the following examples:
**(1)**
for $A_n=(0,a_n], (a_1,a_2)=(10,200)$, $a_n=1+1/n$ for $n$ odd and $a_n=5-1/n$ for $n$ even, and $n\geq 3$,
$limsup_{n\rightarrow \infty}a_n = 5$, $liminf_{n\rightarrow \infty}a_n = 1$, $limsup_{n\rightarrow \infty}A_n = (0,5)$, $liminf_{n\rightarrow \infty}A_n = (0,1]$.
**(2)**
for $A_n=[0,a_n), (a_1,a_2,a_3,a_4)=(10,100,1000,10000)$, $a_{2n+1}=2-1/(2n+1)$ for $n\geq2$ and $a_{2n}=4+1/(2n)$ for $n\geq4$,
$limsup_{n\rightarrow \infty}a_n = 4$, $liminf_{n\rightarrow \infty}a_n = 2$, $limsup_{n\rightarrow \infty}A_n = [0,4]$, $liminf_{n\rightarrow \infty}A_n = [0,2)$.
**(3)**
for $A_n=(0,a_n], (a_1,a_2)=(50,20)$, $a_{3n}=1+1/(3n), a_{3n+1}=1+1/(3n+1), a_{3n+2}=3-(1/3n+2)$ for $n\geq1$,
$limsup_{n\rightarrow \infty}a_n = 3$, $liminf_{n\rightarrow \infty}a_n = 1$, $limsup_{n\rightarrow \infty}A_n = (0,3)$, $liminf_{n\rightarrow \infty}A_n = (0,1)$.
**Is there a general formula describing $limsup_{n\rightarrow \infty}A_n$ and $liminf_{n\rightarrow \infty}A_n$ with the open/closed interval notation, for an arbitrarily defined $\{a_n\}$?**
Thanks for any help!
I know the following examples:
**(1)**
for $A_n=(0,a_n], (a_1,a_2)=(10,200)$, $a_n=1+1/n$ for $n$ odd and $a_n=5-1/n$ for $n$ even, and $n\geq 3$,
$limsup_{n\rightarrow \infty}a_n = 5$, $liminf_{n\rightarrow \infty}a_n = 1$, $limsup_{n\rightarrow \infty}A_n = (0,5)$, $liminf_{n\rightarrow \infty}A_n = (0,1]$.
**(2)**
for $A_n=[0,a_n), (a_1,a_2,a_3,a_4)=(10,100,1000,10000)$, $a_{2n+1}=2-1/(2n+1)$ for $n\geq2$ and $a_{2n}=4+1/(2n)$ for $n\geq4$,
$limsup_{n\rightarrow \infty}a_n = 4$, $liminf_{n\rightarrow \infty}a_n = 2$, $limsup_{n\rightarrow \infty}A_n = [0,4]$, $liminf_{n\rightarrow \infty}A_n = [0,2)$.
**(3)**
for $A_n=(0,a_n], (a_1,a_2)=(50,20)$, $a_{3n}=1+1/(3n), a_{3n+1}=1+1/(3n+1), a_{3n+2}=3-(1/3n+2)$ for $n\geq1$,
$limsup_{n\rightarrow \infty}a_n = 3$, $liminf_{n\rightarrow \infty}a_n = 1$, $limsup_{n\rightarrow \infty}A_n = (0,3)$, $liminf_{n\rightarrow \infty}A_n = (0,1)$.
**Is there a general formula describing $limsup_{n\rightarrow \infty}A_n$ and $liminf_{n\rightarrow \infty}A_n$ with the open/closed interval notation, for an arbitrarily defined $\{a_n\}$?**
Thanks for any help!