- #1
tmt1
- 234
- 0
I need to find the Maclaurin series of this function:
$$f(x) = ln(1 - x^2)$$
I know that $ln(1 + x)$ equals
$$\sum_{n = 1}^{\infty}\frac{(-1)^{n - 1} x^n}{n}$$
Or, $x - \frac{x^2}{2} + \frac{x^3}{3} ...$
If I swap in $-x^2$ for x, I get:
$$-x^2 + \frac{x^4}{2} - \frac{x^5}{3} + \frac{x^6}{4} ...$$
Is this a valid method?
However, the answer in the text says
$$- (x^2 + \frac{x^4}{2} + \frac{x^6}{3} ...)$$
$$f(x) = ln(1 - x^2)$$
I know that $ln(1 + x)$ equals
$$\sum_{n = 1}^{\infty}\frac{(-1)^{n - 1} x^n}{n}$$
Or, $x - \frac{x^2}{2} + \frac{x^3}{3} ...$
If I swap in $-x^2$ for x, I get:
$$-x^2 + \frac{x^4}{2} - \frac{x^5}{3} + \frac{x^6}{4} ...$$
Is this a valid method?
However, the answer in the text says
$$- (x^2 + \frac{x^4}{2} + \frac{x^6}{3} ...)$$