- #1
phagist_
- 25
- 0
Homework Statement
Let v,w be vectors in a complex inner product space such that ||v|| = 1,
||w|| = 3 and <v,w> = 1 + 2i. Find ||v + iw||.
Homework Equations
The properties of an inner product.
The Attempt at a Solution
I figured
[tex]||v+iw||^2[/tex] = <v+iw,v+iw>
Then using the properties of the inner product, I broke it up;
[tex]||v+iw||^2[/tex] = <v,v+iw>+<iw,v+iw>
and <v,v+iw> = <v,v> + <v,iw> and using the 'conjugate symmetry'
= <v,v> - i<v,w>
= 1-i(1+2i)
= 3-i
Now for <iw,v+iw>;
=i<w,v+iw>
=i{<w,v>+<w,iw>}
=i{1-2i - i<w,w>} (since <v,w>=[tex]\overline{<w,v>}[/tex])
=i+2-9i
=2-8i
Now combining it all i get [tex]||v+iw||^2[/tex] = 5-9i
But this is supposed to be the square of the magnitude of v+iw.. so it should be a real number right?
Can somebody help point out where I have gone wrong?
Cheers.