Finding Max and Min of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$

  • MHB
  • Thread starter Albert1
  • Start date
  • Tags
    Max
In summary, the maximum value of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$ is $\dfrac {3\sqrt{3}}{4}$ and the minimum value is $-\dfrac {3\sqrt{3}}{4}$. To find these values, we can substitute $y=\dfrac {2\pi}{3}-x$ into the function and take its derivative, setting it equal to $0$ and solving for $x$. There can only be one maximum and one minimum value for this function, and the value of $x+y$ determines the range of possible values.
  • #1
Albert1
1,221
0
$x+y=\dfrac {2\pi}{3}$

$0\leq x\leq \dfrac{\pi}{2}$

$find: $

$(1):max(sin(x)sin(y))$

$(2):min(sin(x)sin(y))$
 
Mathematics news on Phys.org
  • #2
Albert said:
$x+y=\dfrac {2\pi}{3}$

$0\leq x\leq \dfrac{\pi}{2}$

$find: $

$(1):max(sin(x)sin(y))$

$(2):min(sin(x)sin(y))$

we have
$\sin (A+B) \sin (A-B) = (\sin\, A \cos\, B + \cos \, A \sin \, B) (\sin\, A \cos\, B - \cos \, A \sin \, B)$
$=(\sin^2 A \cos^2 B - \cos^2 A \sin^2 B) = \sin ^2 A (1- sin ^2 B ) - \sin ^2 B ( 1 - sin ^2 A) = \sin ^2 A - \sin ^2 B$
let $x= \frac {\pi}{3} + \alpha$ and hence $y = \frac {\pi}{3} - \alpha$
so
$\sin\, \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$
the above is maximum when $\sin^2 \alpha = 0$ minimum or $x = y = \frac {\pi}{3}$ and value is $\frac{3}{4}$
now both A and B are 0 or positive and minumum is zero when $x= 0, y = \frac{2\pi}{3}$
 
Last edited:
  • #3
kaliprasad said:
we have
$\sin (A+B) \sin (A-B) = (\sin\, A \cos\, B + \cos \, A \sin \, B) (\sin\, A \cos\, B - \cos \, A \sin \, B)$
$=(\sin^2 A \cos^2 B - \cos^2 A \sin^2 B) = \sin ^2 A (1- sin ^2 B ) - \sin ^2 B ( 1 - sin ^2 A) = \sin ^2 A - \sin ^2 B$
let $x= \frac {\pi}{3} + \alpha$ and hence $y = \frac {\pi}{3} - \alpha$
so
$\sin\, \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} \sin ^2 \alpha$-----(*)
the above is maximum when $\sin^2 \alpha = 0$ minimum or $x = y = \frac {\pi}{3}$ and value is $\frac{3}{4}$
now both A and B are 0 or positive and minumum is zero when $x= 0, y = \frac{2\pi}{3}$
(*)=
$\sin\,x \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$-----(*)
 
  • #4
Albert said:
(*)=
$\sin\,x \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$-----(*)

Thanks done the needful
 

FAQ: Finding Max and Min of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$

What is the maximum value of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$?

The maximum value of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$ is $\dfrac {3\sqrt{3}}{4}$.

What is the minimum value of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$?

The minimum value of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$ is $-\dfrac {3\sqrt{3}}{4}$.

How do you find the maximum and minimum values of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$?

To find the maximum and minimum values of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$, we can use the following steps:

  1. Substitute $y=\dfrac {2\pi}{3}-x$ into the function $sin(x)sin(y)$.
  2. Take the derivative of the resulting function with respect to $x$.
  3. Set the derivative equal to $0$ and solve for $x$.
  4. Plug in the value of $x$ into the original function to find the corresponding value of $y$.
  5. Repeat this process with the second derivative to confirm that the extreme values found are indeed maximum or minimum.

Can there be multiple maximum or minimum values of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$?

No, there can only be one maximum and one minimum value of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$. This is because the function is continuous and the domain is limited to a specific range, so there can only be one extreme value.

How does the value of $x+y$ affect the maximum and minimum values of $sin(x)sin(y)$?

The value of $x+y$ does not affect the maximum and minimum values of $sin(x)sin(y)$ itself, but it does determine the range of possible values. In this case, since $x+y=\dfrac {2\pi}{3}$, the maximum and minimum values will fall within the range of $-\dfrac {3\sqrt{3}}{4}$ to $\dfrac {3\sqrt{3}}{4}$.

Similar threads

Replies
2
Views
1K
Replies
2
Views
885
Replies
5
Views
1K
Replies
7
Views
1K
Replies
2
Views
806
Replies
1
Views
913
Replies
2
Views
975
Replies
2
Views
884
Back
Top