Finding Maximum Value with Partial Differentiation

In summary, the maximum value of the given expression is \frac{225}{32}, which occurs when x=\frac{3}{4} or x=\frac{5}{4}. This solution avoids the use of calculus and provides a quick and efficient method for finding the maximum value.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Find the maximum of the expression \(\displaystyle x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4\) if \(\displaystyle x,\;y\) are real numbers with \(\displaystyle x+y=2\).
 
Mathematics news on Phys.org
  • #2
anemone said:
Find the maximum of the expression \(\displaystyle x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4\) if \(\displaystyle x,\;y\) are real numbers with \(\displaystyle x+y=2\).
This may not be the quickest solution, but it avoids calculus. Let $x=1+t$, then $y=1-t$. Notice that $1+x+x^2+x^3 = \dfrac{x^4-1}{x-1} = \dfrac{(1+t)^4-1}{t}$, and similarly $1+y+y^2+y^3 = -\dfrac{(1-t)^4-1}{t}.$ Also $xy = 1-t^2.$ Then $$ \begin{aligned}x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4 &= xy\bigl((1+x+x^2+x^3) + (1+y+y^2+y^3) - 1\bigr) \\ &= (1-t^2)\Bigl(\frac{(1+t)^4-1}{t} - \frac{(1-t)^4-1}{t} - 1\Bigr) \\ &= (1-t^2)(7+8t^2) \\ &= 7+t^2 -8t^4 \\ &= \frac{225}{32} - 8\Bigl(t^2 - \frac1{16}\Bigr)^2\quad \text{(completing the square).}\end{aligned}$$ Thus the maximum value is $\frac{225}{32}$, which occurs when $t = \pm\frac14$, or when $x = \frac34$ or $\frac54.$
 
Last edited by a moderator:
  • #3
Here's a method involving the calculus:

If we use the constraint to get \(\displaystyle y=2-x\) and substitute this into the objective function, we find, after simplification that:

\(\displaystyle f(x)=-8x^4+32x^3-47x^2+30x\)

Equating the derivative to zero:

\(\displaystyle f'(x)=-32x^3+96x^2-94x+30=0\)

Dividing through by 2, we have:

\(\displaystyle -16x^3+48x^2-47x+15=0\)

Multiplying through by -1 and factoring, we have:

\(\displaystyle (x-1)(4x-5)(4x-3)=0\)

Use of the first derivative test shows that relative maxima occur at:

\(\displaystyle x=\frac{3}{4},\,\frac{5}{4}\)

and we find:

\(\displaystyle f_{\text{max}}=f\left(\frac{3}{4} \right)=f\left(\frac{5}{4} \right)=\frac{225}{32}\)
 
  • #4
Thanks to both of you for participating and also the awesome method on how to solve this problem too!

My solution:

\(\displaystyle x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4=xy(x^3+x^2+x+1+y+y^2+y^3)\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x^3+y^3)+(x^2+y^2)+(x+y)+1)\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x+y)^3-3xy(x+y)+(x+y)^2-2xy+(x+y)+1)\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((2)^3-3xy(2)+(2)^2-2xy+(2)+1)\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy(15-8xy)\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=-8(xy-\frac{15}{16})^2+\frac{225}{32}\)

Hence, the maximum value is \(\displaystyle \frac{225}{32}\).
 
  • #5


To find the maximum value of this expression, we can use the method of partial differentiation. Taking the partial derivative with respect to x and setting it equal to 0, we get:

4x^3y + 3x^2y + 2xy + y + y^2 + y^3 + y^4 = 0

Rearranging, we get:

x^3y + x^2y + xy + y + y^2 + y^3 + y^4 = 0

Factoring out y, we get:

y(x^3 + x^2 + x + 1 + y + y^2 + y^3) = 0

Since x and y are real numbers, we can set y = 0 to get the maximum value of the expression. Plugging in y = 0, we get:

x^4 + x^3 + x^2 = 0

Solving for x, we get x = 0 or x = -1. Substituting these values back into the original expression, we get the maximum value to be 0.

Therefore, the maximum value of the expression x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4 is 0, when x = 0 and y = 2, or when x = -1 and y = 3. This means that the maximum value occurs when the real numbers x and y are either 0 and 2, or -1 and 3, and their sum is 2.
 

FAQ: Finding Maximum Value with Partial Differentiation

What is the concept of finding maximum value?

The concept of finding maximum value is to determine the highest possible value within a given set of data. This can be useful in various fields such as mathematics, economics, and science.

What is the difference between maximum value and minimum value?

The maximum value is the highest value in a set of data, while the minimum value is the lowest value in the same set of data.

How is the maximum value calculated?

The method for calculating the maximum value depends on the type of data. For numerical data, the maximum value can be found by arranging the data in ascending order and selecting the last value. For continuous data, it can be calculated using derivatives and critical points.

What are some real-life applications of finding maximum value?

Finding maximum value has various real-life applications, such as determining the maximum capacity of a building, maximizing profit in a business, and finding the optimal dosage of a medication for maximum effectiveness.

What are some common algorithms used for finding maximum value?

Some common algorithms used for finding maximum value include brute force search, divide and conquer, and dynamic programming. These algorithms may vary in efficiency and are used depending on the type and size of the data set.

Similar threads

Replies
1
Views
1K
Replies
4
Views
1K
Replies
18
Views
2K
Replies
6
Views
959
Replies
3
Views
1K
Replies
2
Views
1K
Back
Top