I Finding Momentum Mean & Variance from Wavefunction

Kashmir
Messages
466
Reaction score
74
I've a Gaussian momentum space wavefunction as ##\phi(p)=\left(\frac{1}{2 \pi \beta^{2}}\right)^{1 / 4} e^{-\left(p-p_{0}\right)^{2} / 4 \beta^{2}}##

So that ##|\phi(p)|^{2}=\frac{e^{-\left(p-p_{0}\right)^{2} / 2 \beta^{2}}}{\beta \sqrt{2 \pi}}##

Also then ##\psi(x, t)=\frac{1}{\sqrt{2 \pi {\hbar}}} \int_{-\infty}^{} \phi(p) e^{i px/ {\hbar} } e^{-i p^{2} t / 2 m
{\hbar} } d p##

hence ##\phi(p, t)=\frac{1}{\sqrt{2 \pi h}} \int_{}^{} \psi(x, t) e^{-i px / {\hbar} } d x##I want to find ##\langle p\rangle## and ##\Delta p## at any time ##t##. I can use the momentum or position wavefunction to do that, however I'm getting large number of integrals.

Is there any quicker way to find them in this case?
 
Physics news on Phys.org
Kashmir said:
Is there any quicker way to find them in this case?
Probably not. In any case, you have to learn to work with these integrals and Fourier transforms.

If you work in momentum space, then you need the momentum-space version of the SDE to get the time-dependent wave-function. Perhaps that is simplest?
 
PeroK said:
Probably not. In any case, you have to learn to work with these integrals and Fourier transforms.

If you work in momentum space, then you need the momentum-space version of the SDE to get the time-dependent wave-function. Perhaps that is simplest?
Thank you. :)
 
But you have the solution in momentum space. Since ##\hat{H}=\hat{p}^2/(2m)## in momentum space the Schrödinger equation reads
$$\mathrm{i} \hbar \partial_t \phi(p,t)=\frac{p^2}{2m} \phi(p,t)$$
with the solution
$$\phi(p,t)=\exp \left (-\frac{\mathrm{i} p^2 t}{2m \hbar} \right) \phi_0(p).$$
Correspondingly the momentum distribution doesn't change,
$$|\phi(p,t)|^2=|\phi_0(p)|^2.$$
 
vanhees71 said:
But you have the solution in momentum space. Since ##\hat{H}=\hat{p}^2/(2m)## in momentum space the Schrödinger equation reads
$$\mathrm{i} \hbar \partial_t \phi(p,t)=\frac{p^2}{2m} \phi(p,t)$$
with the solution
$$\phi(p,t)=\exp \left (-\frac{\mathrm{i} p^2 t}{2m \hbar} \right) \phi_0(p).$$
Correspondingly the momentum distribution doesn't change,
$$|\phi(p,t)|^2=|\phi_0(p)|^2.$$
I've not done Schrodinger equation in momentum space but this is my attempt. If it's wrong please tell me:

By operation of a momentum bra on first equation we've the second one

##\begin{aligned} i \hbar \frac{d}{d t}|\psi\rangle &=\frac{1}{2 m} \hat{p}^{2}|\psi\rangle \\ i{\hbar} \frac{d}{d t} \phi(p, t) &=\frac{1}{2 m}\left\langle p\left|\hat{p}^{2}\right| \psi\right\rangle \end{aligned}##Now ##\langle p|\hat{p} \cdot \hat{p}| \psi\rangle## can be evaluated by noting that ##p<p \mid=\langle p| \hat{p}##

So We get ##i \hbar \frac{d}{d t} \phi(p ,t)=(p^{2}/2m). \phi(p,t)##
 
  • Like
Likes vanhees71 and PeroK
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top