- #1
bomba923
- 763
- 0
With no air resistance, I shoot a cannonball from a building of height [itex] h [/itex], with an initial velocity [itex] v_0 [/itex] at an angle of elevation [itex] \theta [/itex]. I'm trying to find the optimal angle for maximum range. I will use a parametric equation to represent the cannonball location at the time [itex] t [/itex]. So,
*The cannonball's position is represented by the parametric function (well, obviously the initial position is at [itex] \left( {0,h} \right) [/itex]),
[tex] \left\{ \begin{gathered}
x = v_0 t\cos \theta \hfill \\
y = h + v_0 t\sin \theta - \frac{{gt^2 }}{2} \hfill \\ \end{gathered} \right\} [/tex]
and so time it takes for the cannonball to hit the ground is
[tex] h + v_0 t\sin \theta - \frac{{gt^2 }}{2} = 0 \Rightarrow t = \frac{{ - v_0 \sin \theta + \sqrt {v_0^2 \sin ^2 \theta - 2gh} }}{{2h}} [/tex]
*Thus, the range of the projectile is
[tex] x = v_0 \cos \theta \frac{{\sqrt {v_0^2 \sin ^2 \theta - 2gh} - v_0 \sin \theta }}{{2h}} = \frac{{v_0 \cos \theta }}{{2h}}\left( {\sqrt {v_0^2 \sin ^2 \theta - 2gh} - v_0 \sin \theta } \right) [/tex]
**But, which [tex] \theta [/tex] will maximize the range?
[tex]\frac{{d}}{{d\theta }}\left[ {\frac{{v_0 \cos \theta }}{{2h}}\left( {\sqrt {v_0^2 \sin ^2 \theta - 2gh} - v_0 \sin \theta } \right)} \right] = 0 \Rightarrow [/tex]
[tex] \frac{1}{{2h}} \cdot \left[ {v_0 \cos \theta \left( {\frac{{2v_0^2 \sin \theta \cos \theta }}{{2\sqrt {v_0^2 \sin ^2 \theta - 2gh} }} - v_0 \cos \theta } \right) - v_0 \sin \theta \left( {\sqrt {v_0^2 \sin ^2 \theta - 2gh} - v_0 \sin \theta } \right)} \right] = 0 \Rightarrow [/tex]
*Well, I can factor out [itex] v_0 /2h [/itex], and set what remains equal to zero:
[tex] {v_0 \cos ^2 \theta \left( {\frac{{v_0 \sin \theta }}{{\sqrt {v_0^2 \sin ^2 \theta - 2gh} }} - 1} \right) - \sin \theta \left( {\sqrt {v_0^2 \sin ^2 \theta - 2gh} - v_0 \sin \theta } \right)} = 0 \Rightarrow [/tex]
[tex] \frac{{v_0^2 \sin \theta \cos ^2 \theta }}{{\sqrt {v_0^2 \sin ^2 \theta - 2gh} }} - v_0 \cos ^2 \theta + v_0 \sin ^2 \theta - \sin \theta \sqrt {v_0^2 \sin ^2 \theta - 2gh} = 0 \Rightarrow [/tex]
[tex] v_0 \left( {\frac{{v_0 \sin \theta \cos ^2 \theta }}{{\sqrt {v_0^2 \sin ^2 \theta - 2gh} }} - \cos 2\theta } \right) = \sin \theta \sqrt {v_0^2 \sin ^2 \theta - 2gh} \Rightarrow [/tex]
*Then I multiply both sides by [tex] {\sqrt {v_0^2 \sin ^2 \theta - 2gh} } [/tex] and then divide each side by [itex] v_0 [/itex]
[tex] v_0 \sqrt {v_0^2 \sin ^2 \theta - 2gh} \left( {\frac{{v_0 \sin \theta \cos ^2 \theta }}{{\sqrt {v_0^2 \sin ^2 \theta - 2gh} }} - \cos 2\theta } \right) = \sin \theta \left( {v_0^2 \sin ^2 \theta - 2gh} \right) [/tex]
[tex] v_0 \cos ^2 \theta - \left( {\cos 2\theta } \right)\sqrt {v_0^2 - 2gh\csc ^2 \theta } = v_0 \sin ^2 \theta - 2gh \Rightarrow [/tex]
[tex] \begin{gathered}
\sqrt {v_0^2 - 2gh\csc ^2 \theta } = 2gh + 1 \Rightarrow \hfill \\
v_0^2 - 2gh\csc ^2 \theta = 4gh\left( {gh + 1} \right) + 1 \Rightarrow \hfill \\
- 2gh\csc ^2 \theta = v_0^2 - 4gh\left( {gh + 1} \right) - 1 \Rightarrow \hfill \\
\frac{1}{{\sin \theta }} = \sqrt {\frac{{v_0^2 - 4gh\left( {gh + 1} \right) - 1}}{{2gh}}} \Rightarrow \theta = \sin ^{ - 1} \left\{ {\left[ {\frac{{v_0^2 - 4gh\left( {gh + 1} \right) - 1}}{{2gh}}} \right]^{ - \frac{1}{2}} } \right\} \hfill \\ \end{gathered} [/tex]
But I try a test with [itex] h = 50m,\;v_0 = 100\frac{m}{s} [/itex], and the optimal angle is not the one solved by the equation!
*The cannonball's position is represented by the parametric function (well, obviously the initial position is at [itex] \left( {0,h} \right) [/itex]),
[tex] \left\{ \begin{gathered}
x = v_0 t\cos \theta \hfill \\
y = h + v_0 t\sin \theta - \frac{{gt^2 }}{2} \hfill \\ \end{gathered} \right\} [/tex]
and so time it takes for the cannonball to hit the ground is
[tex] h + v_0 t\sin \theta - \frac{{gt^2 }}{2} = 0 \Rightarrow t = \frac{{ - v_0 \sin \theta + \sqrt {v_0^2 \sin ^2 \theta - 2gh} }}{{2h}} [/tex]
*Thus, the range of the projectile is
[tex] x = v_0 \cos \theta \frac{{\sqrt {v_0^2 \sin ^2 \theta - 2gh} - v_0 \sin \theta }}{{2h}} = \frac{{v_0 \cos \theta }}{{2h}}\left( {\sqrt {v_0^2 \sin ^2 \theta - 2gh} - v_0 \sin \theta } \right) [/tex]
**But, which [tex] \theta [/tex] will maximize the range?
[tex]\frac{{d}}{{d\theta }}\left[ {\frac{{v_0 \cos \theta }}{{2h}}\left( {\sqrt {v_0^2 \sin ^2 \theta - 2gh} - v_0 \sin \theta } \right)} \right] = 0 \Rightarrow [/tex]
[tex] \frac{1}{{2h}} \cdot \left[ {v_0 \cos \theta \left( {\frac{{2v_0^2 \sin \theta \cos \theta }}{{2\sqrt {v_0^2 \sin ^2 \theta - 2gh} }} - v_0 \cos \theta } \right) - v_0 \sin \theta \left( {\sqrt {v_0^2 \sin ^2 \theta - 2gh} - v_0 \sin \theta } \right)} \right] = 0 \Rightarrow [/tex]
*Well, I can factor out [itex] v_0 /2h [/itex], and set what remains equal to zero:
[tex] {v_0 \cos ^2 \theta \left( {\frac{{v_0 \sin \theta }}{{\sqrt {v_0^2 \sin ^2 \theta - 2gh} }} - 1} \right) - \sin \theta \left( {\sqrt {v_0^2 \sin ^2 \theta - 2gh} - v_0 \sin \theta } \right)} = 0 \Rightarrow [/tex]
[tex] \frac{{v_0^2 \sin \theta \cos ^2 \theta }}{{\sqrt {v_0^2 \sin ^2 \theta - 2gh} }} - v_0 \cos ^2 \theta + v_0 \sin ^2 \theta - \sin \theta \sqrt {v_0^2 \sin ^2 \theta - 2gh} = 0 \Rightarrow [/tex]
[tex] v_0 \left( {\frac{{v_0 \sin \theta \cos ^2 \theta }}{{\sqrt {v_0^2 \sin ^2 \theta - 2gh} }} - \cos 2\theta } \right) = \sin \theta \sqrt {v_0^2 \sin ^2 \theta - 2gh} \Rightarrow [/tex]
*Then I multiply both sides by [tex] {\sqrt {v_0^2 \sin ^2 \theta - 2gh} } [/tex] and then divide each side by [itex] v_0 [/itex]
[tex] v_0 \sqrt {v_0^2 \sin ^2 \theta - 2gh} \left( {\frac{{v_0 \sin \theta \cos ^2 \theta }}{{\sqrt {v_0^2 \sin ^2 \theta - 2gh} }} - \cos 2\theta } \right) = \sin \theta \left( {v_0^2 \sin ^2 \theta - 2gh} \right) [/tex]
[tex] v_0 \cos ^2 \theta - \left( {\cos 2\theta } \right)\sqrt {v_0^2 - 2gh\csc ^2 \theta } = v_0 \sin ^2 \theta - 2gh \Rightarrow [/tex]
[tex] \begin{gathered}
\sqrt {v_0^2 - 2gh\csc ^2 \theta } = 2gh + 1 \Rightarrow \hfill \\
v_0^2 - 2gh\csc ^2 \theta = 4gh\left( {gh + 1} \right) + 1 \Rightarrow \hfill \\
- 2gh\csc ^2 \theta = v_0^2 - 4gh\left( {gh + 1} \right) - 1 \Rightarrow \hfill \\
\frac{1}{{\sin \theta }} = \sqrt {\frac{{v_0^2 - 4gh\left( {gh + 1} \right) - 1}}{{2gh}}} \Rightarrow \theta = \sin ^{ - 1} \left\{ {\left[ {\frac{{v_0^2 - 4gh\left( {gh + 1} \right) - 1}}{{2gh}}} \right]^{ - \frac{1}{2}} } \right\} \hfill \\ \end{gathered} [/tex]
But I try a test with [itex] h = 50m,\;v_0 = 100\frac{m}{s} [/itex], and the optimal angle is not the one solved by the equation!
Last edited: