- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! :)
Having the transformations:
$$\xi=\xi(x,y), \eta=\eta(x,y)$$
I want to find the following partial derivatives:
$$\frac{\partial}{\partial{x}}= \frac{\partial}{ \partial{\xi}} \frac{\partial{\xi}}{\partial{x}}+\frac{\partial}{\partial{\eta}} \frac{\partial{\eta}}{\partial{x}}=\partial_{\xi} \xi_x+\partial_{\eta} \eta_x$$
$$\frac{\partial}{\partial{y}}= \frac{\partial}{ \partial{\xi}} \frac{\partial{\xi}}{\partial{y}}+\frac{\partial}{\partial{\eta}} \frac{\partial{\eta}}{\partial{y}}=\partial_{\xi} \xi_y+\partial_{\eta} \eta_y$$
$$\frac{\partial^2}{\partial{x^2}}=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{x}}=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{x}} \frac{\partial{\xi}}{\partial{x}}+\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{\eta}} \frac{\partial{\eta}}{\partial{x}}$$
I got stuck...How can I continue??
Having the transformations:
$$\xi=\xi(x,y), \eta=\eta(x,y)$$
I want to find the following partial derivatives:
$$\frac{\partial}{\partial{x}}= \frac{\partial}{ \partial{\xi}} \frac{\partial{\xi}}{\partial{x}}+\frac{\partial}{\partial{\eta}} \frac{\partial{\eta}}{\partial{x}}=\partial_{\xi} \xi_x+\partial_{\eta} \eta_x$$
$$\frac{\partial}{\partial{y}}= \frac{\partial}{ \partial{\xi}} \frac{\partial{\xi}}{\partial{y}}+\frac{\partial}{\partial{\eta}} \frac{\partial{\eta}}{\partial{y}}=\partial_{\xi} \xi_y+\partial_{\eta} \eta_y$$
$$\frac{\partial^2}{\partial{x^2}}=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{x}}=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{x}} \frac{\partial{\xi}}{\partial{x}}+\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{\eta}} \frac{\partial{\eta}}{\partial{x}}$$
I got stuck...How can I continue??