MHB Finding Perfect Square Combinations: $m,n\in N$

AI Thread Summary
The discussion focuses on finding natural numbers m and n, where n is less than m, under specific conditions. The constraints include m being between 1000 and 2011, the difference m-n being a power of a prime, and the product m*n being a perfect square. Participants explore various mathematical approaches to identify all suitable values for m and n that satisfy these criteria. The conversation emphasizes the importance of understanding prime powers and perfect squares in number theory. Ultimately, the goal is to derive a comprehensive list of valid combinations for m and n.
Albert1
Messages
1,221
Reaction score
0
$m,n\in N ,n<m $
given :
$(1)1000\leq m<2011$
$(2) m-n=p^k$ here $p$ is a prime, and $k$$\in\{0,1,2\}$
$(3)m\times n $ is a perfect square number , find all possibe $m$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$m,n\in N ,n<m $
given :
$(1)1000\leq m<2011$
$(2) m-n=p^k$ here $p$ is a prime, and $k$$\in\{0,1,2\}$
$(3)m\times n $ is a perfect square number , find all possibe $m$
k cannot be zero. because

$x(x+1)$ for integer x >0 is between $x^2$ and $(x+1)^2$ and not perfect square
p cannot be 2 because then we have
$x(x+2)= (x+1)^2-1$ not a perfect square
$x(x+4) = (x+2)^2-4$ not a perfect square
so we have p is odd and now for power 1

$m$ and $m-p$ one is odd and another is even and both have to be perfect square
if not then $m = xa^2$ and $n = xb^2$ and $m-n = x(a^2-b^2)$ not a prime unless x = 1
so both are perfect square.
m and m-p have to be square of consecutive numbers else a^2-b^2 = (a-b)(a+b) is not prime
so m is value x then $2x-1$ is prime
$1000 < 32^2$ and $2000 > 44^2$
so we look for 2 * 32-1 to 2 * 44 -1 to be prime.
they are $67(m= 34^2),71(m=36^2), 73(m= 37^2),79(m= 40^2),83(m=44^2)$

now take the case of $p^2$
there are 2 cases
m and n both are consecutive squares
$p^2$ is between 61 and 88
but there is no p

there are 2nd case that is p is factor of m and n
$n = a^2p$ and $m=b^2p$
and $b^2-a^2$ is divisible by p.
we see by checking the value $m=1900$
 
kaliprasad said:
k cannot be zero. because

$x(x+1)$ for integer x >0 is between $x^2$ and $(x+1)^2$ and not perfect square
p cannot be 2 because then we have
$x(x+2)= (x+1)^2-1$ not a perfect square
$x(x+4) = (x+2)^2-4$ not a perfect square
so we have p is odd and now for power 1

$m$ and $m-p$ one is odd and another is even and both have to be perfect square
if not then $m = xa^2$ and $n = xb^2$ and $m-n = x(a^2-b^2)$ not a prime unless x = 1
so both are perfect square.
m and m-p have to be square of consecutive numbers else a^2-b^2 = (a-b)(a+b) is not prime
so m is value x then $2x-1$ is prime
$1000 < 32^2$ and $2000 > 44^2$
so we look for 2 * 32-1 to 2 * 44 -1 to be prime.
they are $67(m= 34^2),71(m=36^2), 73(m= 37^2),79(m= 40^2),83(m=44^2)$

now take the case of $p^2$
there are 2 cases
m and n both are consecutive squares
$p^2$ is between 61 and 88
but there is no p

there are 2nd case that is p is factor of m and n
$n = a^2p$ and $m=b^2p$
and $b^2-a^2$ is divisible by p.
we see by checking the value $m=1900$
m=1156,1296,1369,1600,1764 (k=1)
m=1377,1900 (k=2)
you miss 1377
 
Albert said:
m=1156,1296,1369,1600,1764 (k=1)
m=1377,1900 (k=2)
you miss 1377

right

I missed $1377 = 17 * 81 = 17 * 9^2= 17 * (\frac{17+1}{2})^2$
I got $1900 = 19 * 100 = 19 * (\frac{19+1}{2})^2$

basis for solution
for the case k= 2 we have
$m= pa^2$ and $n=n-p^2= pb^2$
and $a^2-b^2=(a-b)(a+b)$ is p so
a-b = 1
a+b = p
or
$m= p(\frac{p+1}{2})^2$
as an estmiate
now m = 1000 gives $p > 15$
m = 2011 given $p < 21$
so p = 17 or 19 and hence the result
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top