- #1
skate_nerd
- 176
- 0
In doing a seemingly simple homework problem, I came across a snag...
It says to find the potential function \(f\) for the vector field \(\vec{F}\). The problem states
$$\vec{F}=(y+z)\hat{i}+(x+z)\hat{j}+(x+y)\hat{k}$$
So I figured that just the simple integral of each section respective to its component direction would give the potential function
$$f=x(y+z)+y(x+z)+z(x+y)+C$$
However, the answer in the back of the book says other wise. It claims that
$$f=x(y+z)+zy+C$$
Now I can kind of recognize that distributing out my original answer would give something similar to this, but wouldn't it really be
$$f=2x(y+z)+2zy+C$$
Which is ultimately
$$f=2xy+2xz+2zy+C$$
Does anyone have any idea how they got to this answer? I'm a little stuck here.
It says to find the potential function \(f\) for the vector field \(\vec{F}\). The problem states
$$\vec{F}=(y+z)\hat{i}+(x+z)\hat{j}+(x+y)\hat{k}$$
So I figured that just the simple integral of each section respective to its component direction would give the potential function
$$f=x(y+z)+y(x+z)+z(x+y)+C$$
However, the answer in the back of the book says other wise. It claims that
$$f=x(y+z)+zy+C$$
Now I can kind of recognize that distributing out my original answer would give something similar to this, but wouldn't it really be
$$f=2x(y+z)+2zy+C$$
Which is ultimately
$$f=2xy+2xz+2zy+C$$
Does anyone have any idea how they got to this answer? I'm a little stuck here.