MHB Finding Real Part of $z$ for Complex Numbers

AI Thread Summary
To find the real part of the complex number $z$, the condition that $\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ must be a real number is key. The given complex numbers are $z_1 = 18 + 83i$, $z_2 = 18 + 39i$, and $z_3 = 78 + 99i$. By analyzing the relationships between these points in the complex plane, the goal is to maximize the imaginary part of $z$. The solution ultimately reveals that the real part of $z$ is 78.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $z_1=18+83i,\,z_2=18+39i$ and $z_3=78+99i$, where $i=\sqrt{-1}$. Let $z$ be the unique complex number with the properties that

$\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ is a real number and the imaginary part of $z$ is the greatest possible. Find the real part of $z$.
 
Mathematics news on Phys.org
[TIKZ]
\begin{scope}
\draw (0,0) circle(3);
\end{scope}
\node (1) at (0,0) {c};
\draw (0,0) node[anchor=south] {.};
\coordinate[label=left: $z_2$] (E) at (-2,-2.236);
\coordinate[label=left: $z_1$] (A) at (-2,2.236);
\coordinate[label=above: $z$] (B) at (-1,2.828);
\coordinate[label=above: $z_3$] (C) at (1.2,2.75);
\coordinate[label=below: $z$] (D) at (2,-2.236);
\draw (E) -- (A);
\draw (E) -- (B);
\draw (E) -- (C);
\draw (E) -- (D);
\draw (A) -- (B);
\draw (B) -- (C);
\draw (C) -- (D);
\node (1) at (-1.8,2) {$\theta_1$};
\node (2) at (-0.8,2.6) {$\theta_2$};
\node (3) at (1.8,-2.0) {$\theta_2$};
[/TIKZ]

Let $\dfrac{z_3-z_1}{z_2-z_1}=r_1\cis(\theta_1)$, where $0<\theta_1<180^{\circ}$.

If $z$ is on or below the line through $z_2$ and $z_3$, then $\dfrac{z-z_2}{z-z_3}=r_2\cis(\theta_2)$, where $0<\theta_2<180^{\circ}$. Because $r_1 \cis(\theta_2)\cdot r_2 \cis(\theta_2)=r_1\cdot r_2\cdot \cis(\theta_1+\theta_2)$ is real, it follows that $\theta_1+\theta_2=180^{\circ}$, meaning that $z_1,\,z_2,\,z_3$ and $z$ lie on a circle.

On the other hand, if $z$ is above the line through $z_2$ and $z_3$, then $\dfrac{z-z_2}{z-z_3}=r_2\cis(-\theta_2)$, where $0<\theta_2<180^{\circ}$. Because $r_1 \cis(\theta_1)\cdot r_2 \cis(\theta_2)=r_1\cdot r_2\cdot \cis(\theta_1-\theta_2)$ is real, it follows that $\theta_1=\theta_2$, meaning that $z_1,\,z_2,\,z_3$ and $z$ lie on a circle.

In either case, $z$ must lie on the circumcircle of $\triangle z_1 z_2 z_3$ whose center is the intersection of the perpendicular bisectors of $\overline{z_1z_2}$ and $\overline{z_1z_3}$, namely, the lines $y=\dfrac{39+83}{2}=61$ and $16(y-91)=-60(x-48)$.

Thus the center of the circle is $c=56+61i$. The imaginary part of $z$ is maximal when $z$ is at the top of the circle, and the real part of $z$ is 56.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top