- #1
yukawa
- 13
- 0
At the thermal equilibrium, the density matrix of a 2 spin-half system is given by:
[tex]
\begin{displaymath}
\mathbf{\rho} =
\left(\begin{array}{cccc}
e^{-(1+c)/T} & 0 & 0 & 0\\
0 & cosh[(1-c)/T] & -sinh[(1-c)/T] & 0\\
0 & -sinh[(1-c)/T] & cosh[(1-c)/T] & 0\\
0 & 0 & 0 & e^{-(1+c)/T}
\end{array}\right)
\end{displaymath}
[/tex]
where c is a parameter.
How to find the reduced density matrix by tracing out the other spin?
i.e. [tex]\rho_{1} = tr_{2}\rho[/tex]
I only know how to find the reduced density matrix for a pure state, say like [tex]\frac{1}{\sqrt{2}}(\left|\downarrow\uparrow> - \left|\uparrow\downarrow> )[/tex]
But for this given density matrix, i have no idea. Are there any equations that i can use? What's the procedure?
[tex]
\begin{displaymath}
\mathbf{\rho} =
\left(\begin{array}{cccc}
e^{-(1+c)/T} & 0 & 0 & 0\\
0 & cosh[(1-c)/T] & -sinh[(1-c)/T] & 0\\
0 & -sinh[(1-c)/T] & cosh[(1-c)/T] & 0\\
0 & 0 & 0 & e^{-(1+c)/T}
\end{array}\right)
\end{displaymath}
[/tex]
where c is a parameter.
How to find the reduced density matrix by tracing out the other spin?
i.e. [tex]\rho_{1} = tr_{2}\rho[/tex]
I only know how to find the reduced density matrix for a pure state, say like [tex]\frac{1}{\sqrt{2}}(\left|\downarrow\uparrow> - \left|\uparrow\downarrow> )[/tex]
But for this given density matrix, i have no idea. Are there any equations that i can use? What's the procedure?