- #1
brasidas
- 9
- 0
Homework Statement
Using method of Frobenius, find a series solution to the following differential equation:
[tex]
x^2\frac{d^2y(x)}{dx^2} + 4x\frac{dy(x)}{dx} + xy(x) = 0
[/tex]
Homework Equations
[tex] y(x) = \sum_{n = 0}^\infty C_{n} x^{n + s}[/tex]
The Attempt at a Solution
[tex]
y(x) = \sum_{n = 0}^\infty C_{n} x^{n + s}
[/tex]
[tex]
\frac{dy(x)}{dx} = \sum_{n = 0}^\infty C_{n} (n + s) x^{n + s - 1}
[/tex]
[tex]
\frac{d^2 y(x)}{dx^2} = \sum_{n = 0}^\infty C_{n} (n + s) (n + s - 1) x^{n + s - 2}
[/tex]
Therefore, by substituting, I get:
[tex]
x^2\frac{d^2y(x)}{dx^2} = \sum_{n = 0}^\infty C_{n} (n + s) (n + s - 1) x^{n + s}
[/tex]
[tex]
4x\frac{dy(x)}{dx} = \sum_{n = 0}^\infty 4C_{n} (n + s) x^{n + s}
[/tex]
[tex]
xy(x) = \sum_{n = 0}^\infty C_{n} x^{n + s + 1} = \sum_{n = 1}^\infty C_{n - 1} x^{n + s} \rightarrow n + 1 = m \leftrightarrow n = m - 1, n \geq 0, m \geq 1
[/tex]
Combining all terms, I get:
[tex]
C_{0}((s + 0) (s + 0 - 1) + 4(s + 0))x^s + \sum_{n = 1}^\infty [C_{n} (n + s) (n + s + 3) + C_{n - 1}] x^{n + s}
[/tex]
Assuming [itex] C_{0} [/itex] is not 0, I get:
[tex]
C_{0}(s(s + 3)) = 0
[/tex]
and...
[tex]
C_{n} (n + s) (n + s + 3) + C_{n - 1} = 0
[/tex]
Now, with the assumption is that [itex] C_{0} [/itex] is not 0, I conclude that:
[tex]
s(s + 3) = 0, s = 0 , -3
[/tex]
Now... So far, so good. The problem is within the generating terms.
[tex]
C_{n} (n + s) (n + s + 3) + C_{n - 1} = 0
[/tex]
This has to be zero at all times, meaning:
[tex]
C_{n} (n + s) (n + s + 3) = - C_{n - 1}
[/tex]
Therefore:
[tex]
C_{n} = - \frac{C_{n - 1}}{(n + s) (n + s + 3)}
[/tex]
So what's the problem? You see, if we assume s = -3, and [itex] C_{0} [/itex] is not 0, then we got a problem at [itex] n = 3, s = -3[/itex] as that will mean the whole equation will explode. This means [itex] C_{0} [/itex], [itex] C_{1} [/itex], [itex] C_{2} [/itex] are all zero, with no information about [itex] C_{3} [/itex]
Am I doing it right? I am having my doubts.
Last edited: