MHB Finding Solutions for a System of Linear Equations with 2 Degrees of Freedom

Yankel
Messages
390
Reaction score
0
Hello again,

I have this system presented below:

\[\left\{\begin{matrix} x+y+z+w=1 \\ -3x-3y+kz-kw=-2 \\ 2x+2y+2z+kw=4-k \end{matrix}\right.\]

I need to find for which values of k the system has an infinite number of solutions with 2 degrees of freedom, and to find a general solution for this case. I did two elementary row operations to get this:

\[\begin{pmatrix} 1 &1 &1 &1 &1 \\ 0 &0 &k+3 &-k+3 &1 \\ 0 &0 &0 &k-2 &2-k \end{pmatrix}\]Then I said that infinite number of solutions with 2 DF will be when k=2, and my final solution was:

w=t
y=s
z=(1-t)/5
x=1-s-t-((1-t)/5)

Am I correct ?

Thanks !
 
Physics news on Phys.org
Looks good! (Yes)
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Back
Top