- #1
Dustinsfl
- 2,281
- 5
I am trying to find the state equations for a mass spring system.
I found the transfer function to be
\[
H(s) = \frac{X_1(s)}{F(s)} = \frac{m_2s^2 + b_2s + k}
{s\big[m_1m_2s^3 + (m_2b_1 + m_1b_2)s^2 +
(k(m_1 + m_2) + b_1b_2)s + k(b_1 + b_2)\big]}
\]
I found the transfer function from
\begin{align}
m_1\ddot{x}_1 &= F - b_1\dot{x}_1 - k(x_1 - x_2)\\
m_2\ddot{x}_2 &= - b_2\dot{x}_2 - k(x_2 - x_1)
\end{align}
So I am trying to find the state matrices \(\mathbf{A}\), \(\mathbf{B}\), \(\mathbf{C}\), and \(\mathbf{D}\) where
\begin{align}
\dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}F\\
\mathbf{y} &= \mathbf{C}\mathbf{x} + \mathbf{D}F
\end{align}
The transfer function is extremely complicated though. How can I obtain the state matrices?
I do know what the matrices are, but I can't find obtain them:
\begin{align}
\mathbf{A} &=
\begin{bmatrix}
0 & 1 & 0 & 0\\
-\frac{k}{m_1} & -\frac{b_1}{m_1} & \frac{k}{m_1} & 0\\
0 & 0 & 0 & 1\\
\frac{k}{m_2} & 0 & -\frac{k}{m_2} & -\frac{b_2}{m_2}
\end{bmatrix}\\
\mathbf{B} &=
\begin{bmatrix}
0\\
\frac{1}{m_1}\\
0\\
0
\end{bmatrix}\\
\mathbf{C} &=
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & 0 & 1 & 0
\end{bmatrix}\\
\mathbf{D} &= \mathbf{0}
\end{align}
I found the transfer function to be
\[
H(s) = \frac{X_1(s)}{F(s)} = \frac{m_2s^2 + b_2s + k}
{s\big[m_1m_2s^3 + (m_2b_1 + m_1b_2)s^2 +
(k(m_1 + m_2) + b_1b_2)s + k(b_1 + b_2)\big]}
\]
I found the transfer function from
\begin{align}
m_1\ddot{x}_1 &= F - b_1\dot{x}_1 - k(x_1 - x_2)\\
m_2\ddot{x}_2 &= - b_2\dot{x}_2 - k(x_2 - x_1)
\end{align}
So I am trying to find the state matrices \(\mathbf{A}\), \(\mathbf{B}\), \(\mathbf{C}\), and \(\mathbf{D}\) where
\begin{align}
\dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}F\\
\mathbf{y} &= \mathbf{C}\mathbf{x} + \mathbf{D}F
\end{align}
The transfer function is extremely complicated though. How can I obtain the state matrices?
I do know what the matrices are, but I can't find obtain them:
\begin{align}
\mathbf{A} &=
\begin{bmatrix}
0 & 1 & 0 & 0\\
-\frac{k}{m_1} & -\frac{b_1}{m_1} & \frac{k}{m_1} & 0\\
0 & 0 & 0 & 1\\
\frac{k}{m_2} & 0 & -\frac{k}{m_2} & -\frac{b_2}{m_2}
\end{bmatrix}\\
\mathbf{B} &=
\begin{bmatrix}
0\\
\frac{1}{m_1}\\
0\\
0
\end{bmatrix}\\
\mathbf{C} &=
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & 0 & 1 & 0
\end{bmatrix}\\
\mathbf{D} &= \mathbf{0}
\end{align}
Last edited: