MHB Finding State Matrices for a Mass Spring System

AI Thread Summary
The discussion focuses on deriving state matrices for a mass-spring system from its transfer function and differential equations. The user has identified the transfer function and attempted to express the system in state-space form, but struggles with the complexity of the equations and the presence of derivatives of the input. They have proposed a setup for state variables but are unsure about the implementation due to the appearance of a derivative of the input in the equations. Concerns are raised about the validity of their approach, particularly regarding the requirement that state-space models should not include derivatives of the input. The user seeks guidance on how to correctly set up the state variables to avoid these issues.
Dustinsfl
Messages
2,217
Reaction score
5
I am trying to find the state equations for a mass spring system.
I found the transfer function to be
\[
H(s) = \frac{X_1(s)}{F(s)} = \frac{m_2s^2 + b_2s + k}
{s\big[m_1m_2s^3 + (m_2b_1 + m_1b_2)s^2 +
(k(m_1 + m_2) + b_1b_2)s + k(b_1 + b_2)\big]}
\]
I found the transfer function from
\begin{align}
m_1\ddot{x}_1 &= F - b_1\dot{x}_1 - k(x_1 - x_2)\\
m_2\ddot{x}_2 &= - b_2\dot{x}_2 - k(x_2 - x_1)
\end{align}
So I am trying to find the state matrices \(\mathbf{A}\), \(\mathbf{B}\), \(\mathbf{C}\), and \(\mathbf{D}\) where
\begin{align}
\dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}F\\
\mathbf{y} &= \mathbf{C}\mathbf{x} + \mathbf{D}F
\end{align}
The transfer function is extremely complicated though. How can I obtain the state matrices?

I do know what the matrices are, but I can't find obtain them:
\begin{align}
\mathbf{A} &=
\begin{bmatrix}
0 & 1 & 0 & 0\\
-\frac{k}{m_1} & -\frac{b_1}{m_1} & \frac{k}{m_1} & 0\\
0 & 0 & 0 & 1\\
\frac{k}{m_2} & 0 & -\frac{k}{m_2} & -\frac{b_2}{m_2}
\end{bmatrix}\\
\mathbf{B} &=
\begin{bmatrix}
0\\
\frac{1}{m_1}\\
0\\
0
\end{bmatrix}\\
\mathbf{C} &=
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & 0 & 1 & 0
\end{bmatrix}\\
\mathbf{D} &= \mathbf{0}
\end{align}
 
Last edited:
Mathematics news on Phys.org
We can write this as one differential equation:
\[
m_1m_2\ddddot{w} + (m_1b_2 + m_2b_1)\dddot{w} + (k(m_1 + m_2) + b_1b_2)\ddot{w} + k(b_1 + b_2)\dot{w} = m_2\ddot{u} + b_2\dot{u} + ku
\]
If the LHS had only a 3rd time derivative and the RHS had only a first time derivative, I could follow the (harder) labeled example here.
But I have tried to follow that idea by setting up the q derivatives as
\begin{alignat}{2}
q_1 &= w\\
q_2 &= \dot{w}\\
q_3 &= \ddot{w}\\
q_4 &= \dddot{w} - m_2\dot{u} - b_2u\\
\dot{q}_1 &= \dot{w} &&={} q_2\\
\dot{q}_2 &= \ddot{w} &&={} q_3\\
\dot{q}_3 &= \dddot{w} &&={} q_4\\
\dot{q}_4 &= \ddddot{w} -m_2\ddot{u} - b_2\dot{u}
\end{alignat}
However, this didn't seem to work. Should the q's be setup differently? Or am I not implementing this correctly?
From my implementation, I had
\begin{align}
\dot{q}_4 &= ku - (m_2^2b_1 + m_1m_2b_2)\dot{u} - (m_2b_1b_2 + m_1b_2^2)u - (m_2b_1 + m_1b_2)q_4 - q_3(k(m_1 + m_2) + b_1b_2) - k(b_1 + b_2)q_2
\end{align}
However, I am suspect of
\[
- (m_2^2b_1 + m_1m_2b_2)\dot{u} - (m_2b_1b_2 + m_1b_2^2)u - (m_2b_1 + m_1b_2)q_4
\]
since there is a \(\dot{u}\) present which came from
\[
\dddot{w}(m_2b_1 + m_1b_2) = (m_2\dot{u} + b_2u + q_4)(m_2b_1 + m_1b_2).
\]
In the harder example, it says "The method has failed because there is a derivative of the input on the right hand, and that is not allowed in a state space model." This cause the concern with \(\dot{u}\) in \(\dot{q}_4\). Thus, I am lead to believe I need a slightly different setup for this problem.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top