- #1
UrbanXrisis
- 1,196
- 1
Surface area integral
sorry, this is not about flux integration... but surface area! sorry about the title!
Find the surface area of the part of the sphere [tex]x^2+y^2+z^2=36 [/tex] that lies above the cone [tex]z=\sqrt{x^2+y^2}[/tex]
[tex]z=\sqrt{36-x^2-y^2} [/tex]
[tex]A(S)=\int\int_D \sqrt{1+\left( \frac{\partial z}{\partial x} \right) ^2 + \left( \frac{\partial z}{\partial y} \right) ^2 } dA[/tex]
[tex] \frac{\partial z}{\partial x} =\frac{1}{2}\left( 36-x^2-y^2 \right) ^{\frac{3}{2}} \left( -2x \right) [/tex]
[tex] \frac{\partial z}{\partial y}=\frac{1}{2}\left( 36-x^2-y^2 \right) ^{\frac{3}{2}} \left( -2y \right) [/tex]
[tex]A(S)=\int\int_D \sqrt{1+\left( \frac{1}{2}\left( 36-x^2-y^2 \right) ^{\frac{3}{2}} \left( -2x \right) \right) ^2 + \left( \frac{1}{2}\left( 36-x^2-y^2 \right) ^{\frac{3}{2}} \left( -2y \right) \right) ^2 } dA[/tex]
is this correct so far? how would I find the ends of integration for a cone?
I've taken the liberty of changing the title of this thread. Since it wasn't even "flux integration" it was bothering me!
sorry, this is not about flux integration... but surface area! sorry about the title!
Find the surface area of the part of the sphere [tex]x^2+y^2+z^2=36 [/tex] that lies above the cone [tex]z=\sqrt{x^2+y^2}[/tex]
[tex]z=\sqrt{36-x^2-y^2} [/tex]
[tex]A(S)=\int\int_D \sqrt{1+\left( \frac{\partial z}{\partial x} \right) ^2 + \left( \frac{\partial z}{\partial y} \right) ^2 } dA[/tex]
[tex] \frac{\partial z}{\partial x} =\frac{1}{2}\left( 36-x^2-y^2 \right) ^{\frac{3}{2}} \left( -2x \right) [/tex]
[tex] \frac{\partial z}{\partial y}=\frac{1}{2}\left( 36-x^2-y^2 \right) ^{\frac{3}{2}} \left( -2y \right) [/tex]
[tex]A(S)=\int\int_D \sqrt{1+\left( \frac{1}{2}\left( 36-x^2-y^2 \right) ^{\frac{3}{2}} \left( -2x \right) \right) ^2 + \left( \frac{1}{2}\left( 36-x^2-y^2 \right) ^{\frac{3}{2}} \left( -2y \right) \right) ^2 } dA[/tex]
is this correct so far? how would I find the ends of integration for a cone?
I've taken the liberty of changing the title of this thread. Since it wasn't even "flux integration" it was bothering me!
Last edited by a moderator: