- #1
peripatein
- 880
- 0
Hello,
D:R3[x]->R3[x] is defined thus for any p(x)=(a0)+(a1)x+(a2)x2+(a3)x3:
D(p(x)) = a1 + (2a2)x + (33)2
I am asked to find [D]B where B is the standard basis {1,x,x2,x3}
I am then asked to find the transition matrix from B to C, where C={1,1+x,x+x2,x2+x3}.
Based on these two I am then asked to find [D]C.
I have found [D]B to be (0 1 0 0)T (0 0 2 0)T (0 0 0 3)T (0 0 0 0)T
I have found the transition matrix to be (1 -1 1 -1)T (0 1 -1 1)T (0 0 1 -1)T (0 0 0 1)T
But then, the multiplication of (0 1 0 0)T (0 0 2 0)T (0 0 0 3)T (0 0 0 0)T by (1 -1 1 -1)T (0 1 -1 1)T (0 0 1 -1)T (0 0 0 1)T does not yield the expected (0 1 -1 1)T (0 0 2 -1)T (0 0 0 3)T (0 0 0 0)T
Any ideas where I might be wrong? I have gone over the algebra several times, and have tried multiplying in the opposite order too.
Homework Statement
D:R3[x]->R3[x] is defined thus for any p(x)=(a0)+(a1)x+(a2)x2+(a3)x3:
D(p(x)) = a1 + (2a2)x + (33)2
I am asked to find [D]B where B is the standard basis {1,x,x2,x3}
I am then asked to find the transition matrix from B to C, where C={1,1+x,x+x2,x2+x3}.
Based on these two I am then asked to find [D]C.
Homework Equations
The Attempt at a Solution
I have found [D]B to be (0 1 0 0)T (0 0 2 0)T (0 0 0 3)T (0 0 0 0)T
I have found the transition matrix to be (1 -1 1 -1)T (0 1 -1 1)T (0 0 1 -1)T (0 0 0 1)T
But then, the multiplication of (0 1 0 0)T (0 0 2 0)T (0 0 0 3)T (0 0 0 0)T by (1 -1 1 -1)T (0 1 -1 1)T (0 0 1 -1)T (0 0 0 1)T does not yield the expected (0 1 -1 1)T (0 0 2 -1)T (0 0 0 3)T (0 0 0 0)T
Any ideas where I might be wrong? I have gone over the algebra several times, and have tried multiplying in the opposite order too.