- #1
Orion1
- 973
- 3
Find tangent slope to parabola using Theorem 2.
[tex]y(x) = x^2 + 2x \; \text{at} \; P(-3.3)[/tex]
Theorem 2:
[tex]m = \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h}[/tex]
[tex]m = \lim_{h \rightarrow 0} \frac{(a + h)^2 + 2(a + h) - 3}{h} = \lim_{h \rightarrow 0} \frac{a^2 + h^2 + 2ah + 2a + 2h - 3}{h}[/tex]
[tex]\lim_{h \rightarrow 0} \frac{a^2 + h^2 + 2ah + 2a + 2h - 3}{h} = \lim_{h \rightarrow 0} \frac{(a + h - 1)(a + h + 3)}{h}[/tex]
I have already solved the tangent line using the Tangent Line Theorem, however, I have been unable to eliminate [tex]h[/tex] from the denominator in this theorem using division or numerator conjugates...
Any suggestions?
Last edited: