- #1
meganlz09
- 1
- 0
I need to find the Taylor polynomial of degree 4 expanded about a=4 for the function f(x)=squareroot of (x)=x^(1/2)
This is what I've started with but I'm not sure how to proceed and if I even started correctly:
f'(x)(-1/2)x^(-1/2)=1/2sqrt(x)
f"(x)=(-1/4)x^(-3/2)=-1/4x^3/2
f"'(x)=(3/8)x^(-3)=3/8sqrt(x)
f""(x)=(-9/8)x^(-4)
and then i just plug 4 in for x
any explanation toward the correct answer would be great,thanks
This is what I've started with but I'm not sure how to proceed and if I even started correctly:
f'(x)(-1/2)x^(-1/2)=1/2sqrt(x)
f"(x)=(-1/4)x^(-3/2)=-1/4x^3/2
f"'(x)=(3/8)x^(-3)=3/8sqrt(x)
f""(x)=(-9/8)x^(-4)
and then i just plug 4 in for x
any explanation toward the correct answer would be great,thanks