- #1
etotheipi
[Mentor Note -- Specialized question moved to the general technical forums]
Homework Statement:: To show that ##J = Ma## for the charged Kerr metric [Wald Ch. 11 Pr. 6]
Relevant Equations:: \begin{align*} \mathrm{d}s^2 = &- \left( \frac{\Delta - a^2 \sin^2{\theta}}{\Sigma}\right) \mathrm{d}t^2 - \frac{2a\sin^2{\theta}(r^2 + a^2 - \Delta)}{\Sigma}\mathrm{d}t \mathrm{d}\phi \\
&+ \left[ \frac{(r^2 + a^2)^2 -\Delta a^2 \sin^2{\theta}}{\Sigma}\right] \sin^2{\theta} \mathrm{d}\phi^2
+ \frac{\Sigma}{\Delta} \mathrm{d}r^2 + \Sigma \mathrm{d}\theta^2 \end{align*}Since ##g_{ab}## is independent of ##\phi##, this spacetime admits a Killing field ##\psi^a = (\partial / \partial \phi)^a## for which we can define a Komar integral,$$J:= \frac{1}{16\pi} \int_{\partial \Sigma} *\mathrm{d}\psi_a = \frac{1}{16\pi} \int_{\partial \Sigma} \epsilon_{abcd} \nabla^c \psi^d$$Defining a two-form ##\boldsymbol{\alpha} := \epsilon_{abcd} \nabla^c \psi^d## and then following the procedure demonstrated by Wald on pages 288-289 let's you write down ##\mathrm{d}\boldsymbol{\alpha} = 3\nabla_{[l} \epsilon_{mn]cd} \nabla^c \psi^d = 2{R^e}_f \psi^f \epsilon_{elmn}##, from which it follows by Stokes that\begin{align*}
\frac{1}{16\pi} \int_{\partial \Sigma} \epsilon_{abcd} \nabla^c \psi^d &= \frac{3}{16 \pi} \int_{\Sigma} \nabla_{[l} \epsilon_{mn]cd} \nabla^c \psi^d \\
&= \frac{(-1)}{8\pi} \int_{\Sigma} R_{ab} n^a \psi^b \mathrm{d}V \\
&= (-1)\int_{\Sigma} \left(T_{ab} - \frac{1}{2} T g_{ab} \right) n^a \psi^b \mathrm{d}V
\end{align*}which follows from contracting Einstein's equation, ##{G^a}_a = {R^a}_a - \frac{1}{2} R {g^a}_a = 8 \pi {T^a}_a \implies R = - 8\pi T## which we can then use to eliminate ##R## in the original Einstein equation.
How do you actually do that integral? I can't see why converting it into a volume integral makes it easier; I would have thought we should instead consider that ##\nabla^c \psi^d = g^{ce}\Gamma^d_{ef} \psi^f## such that the two-form ##\epsilon_{abcd}g^{ce}\Gamma^d_{ef} \psi^f = h \mathrm{d}\theta \wedge \mathrm{d}\phi## for some function ##h## to be determined. Then you'd need to find the Christoffel symbols and compute\begin{align*}
\frac{1}{16\pi} \int_{\partial \Sigma} \epsilon_{abcd} g^{ce}\Gamma^d_{ef} \psi^f &= \int_0^{2\pi} \mathrm{d}\theta \int_0^{\pi} \mathrm{d}\phi \, h
\end{align*}Is that the right way to go about doing the integral? I ask because I'd prefer not to waste a lot of time doing completely the wrong thing ... thanks!
Homework Statement:: To show that ##J = Ma## for the charged Kerr metric [Wald Ch. 11 Pr. 6]
Relevant Equations:: \begin{align*} \mathrm{d}s^2 = &- \left( \frac{\Delta - a^2 \sin^2{\theta}}{\Sigma}\right) \mathrm{d}t^2 - \frac{2a\sin^2{\theta}(r^2 + a^2 - \Delta)}{\Sigma}\mathrm{d}t \mathrm{d}\phi \\
&+ \left[ \frac{(r^2 + a^2)^2 -\Delta a^2 \sin^2{\theta}}{\Sigma}\right] \sin^2{\theta} \mathrm{d}\phi^2
+ \frac{\Sigma}{\Delta} \mathrm{d}r^2 + \Sigma \mathrm{d}\theta^2 \end{align*}Since ##g_{ab}## is independent of ##\phi##, this spacetime admits a Killing field ##\psi^a = (\partial / \partial \phi)^a## for which we can define a Komar integral,$$J:= \frac{1}{16\pi} \int_{\partial \Sigma} *\mathrm{d}\psi_a = \frac{1}{16\pi} \int_{\partial \Sigma} \epsilon_{abcd} \nabla^c \psi^d$$Defining a two-form ##\boldsymbol{\alpha} := \epsilon_{abcd} \nabla^c \psi^d## and then following the procedure demonstrated by Wald on pages 288-289 let's you write down ##\mathrm{d}\boldsymbol{\alpha} = 3\nabla_{[l} \epsilon_{mn]cd} \nabla^c \psi^d = 2{R^e}_f \psi^f \epsilon_{elmn}##, from which it follows by Stokes that\begin{align*}
\frac{1}{16\pi} \int_{\partial \Sigma} \epsilon_{abcd} \nabla^c \psi^d &= \frac{3}{16 \pi} \int_{\Sigma} \nabla_{[l} \epsilon_{mn]cd} \nabla^c \psi^d \\
&= \frac{(-1)}{8\pi} \int_{\Sigma} R_{ab} n^a \psi^b \mathrm{d}V \\
&= (-1)\int_{\Sigma} \left(T_{ab} - \frac{1}{2} T g_{ab} \right) n^a \psi^b \mathrm{d}V
\end{align*}which follows from contracting Einstein's equation, ##{G^a}_a = {R^a}_a - \frac{1}{2} R {g^a}_a = 8 \pi {T^a}_a \implies R = - 8\pi T## which we can then use to eliminate ##R## in the original Einstein equation.
How do you actually do that integral? I can't see why converting it into a volume integral makes it easier; I would have thought we should instead consider that ##\nabla^c \psi^d = g^{ce}\Gamma^d_{ef} \psi^f## such that the two-form ##\epsilon_{abcd}g^{ce}\Gamma^d_{ef} \psi^f = h \mathrm{d}\theta \wedge \mathrm{d}\phi## for some function ##h## to be determined. Then you'd need to find the Christoffel symbols and compute\begin{align*}
\frac{1}{16\pi} \int_{\partial \Sigma} \epsilon_{abcd} g^{ce}\Gamma^d_{ef} \psi^f &= \int_0^{2\pi} \mathrm{d}\theta \int_0^{\pi} \mathrm{d}\phi \, h
\end{align*}Is that the right way to go about doing the integral? I ask because I'd prefer not to waste a lot of time doing completely the wrong thing ... thanks!
Last edited by a moderator: