- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have a triangle $ABC$ with $A(a_1, a_2)$, $B(b_1, b_2)$ and $C(c_1,c_2)$. I want to show that the coordinates of the centroid S is $\left (\frac{1}{3}(a_1+b_1+c_1),\frac{1}{3}(a_2+b_2+c_2) \right )$.
$S$ is the intersection point of the midpoints of AB, BC and CA.
We have that \begin{align*}&M_{AB}=\left (\frac{a_1+b_1}{2}, \frac{a_2+b_2}{2}\right ),&M_{BC}=\left (\frac{b_1+c_1}{2}, \frac{b_2+c_2}{2}\right ),&M_{CA}=\left (\frac{c_1+a_1}{2}, \frac{c_2+a_2}{2}\right )\end{align*}
How can we find then the intersection point?
Do we have to write the line segments $AM_{BC}, BM_{CA}, CM_{AB}$in the form $y=mx+n$ ? (Wondering)
We have a triangle $ABC$ with $A(a_1, a_2)$, $B(b_1, b_2)$ and $C(c_1,c_2)$. I want to show that the coordinates of the centroid S is $\left (\frac{1}{3}(a_1+b_1+c_1),\frac{1}{3}(a_2+b_2+c_2) \right )$.
$S$ is the intersection point of the midpoints of AB, BC and CA.
We have that \begin{align*}&M_{AB}=\left (\frac{a_1+b_1}{2}, \frac{a_2+b_2}{2}\right ),&M_{BC}=\left (\frac{b_1+c_1}{2}, \frac{b_2+c_2}{2}\right ),&M_{CA}=\left (\frac{c_1+a_1}{2}, \frac{c_2+a_2}{2}\right )\end{align*}
How can we find then the intersection point?
Do we have to write the line segments $AM_{BC}, BM_{CA}, CM_{AB}$in the form $y=mx+n$ ? (Wondering)