Finding the Centroid of a Triangle Using Coordinates

In summary, the conversation discusses finding the coordinates of the centroid of a triangle $ABC$ with coordinates $A(a_1,a_2)$, $B(b_1,b_2)$, and $C(c_1,c_2)$. The centroid is defined as the intersection point of the midpoints of the sides $AB$, $BC$, and $CA$. One approach to finding this point is by writing the lines $AM_{BC}, BM_{CA}, CM_{AB}$ in the form $y=mx+n$ and solving for the intersection point. Another approach is to use the fact that the centroid divides the medians in a ratio of 2:1 and use similarity of triangles to calculate the coordinates. The
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! :eek:

We have a triangle $ABC$ with $A(a_1, a_2)$, $B(b_1, b_2)$ and $C(c_1,c_2)$. I want to show that the coordinates of the centroid S is $\left (\frac{1}{3}(a_1+b_1+c_1),\frac{1}{3}(a_2+b_2+c_2) \right )$.

$S$ is the intersection point of the midpoints of AB, BC and CA.

We have that \begin{align*}&M_{AB}=\left (\frac{a_1+b_1}{2}, \frac{a_2+b_2}{2}\right ),&M_{BC}=\left (\frac{b_1+c_1}{2}, \frac{b_2+c_2}{2}\right ),&M_{CA}=\left (\frac{c_1+a_1}{2}, \frac{c_2+a_2}{2}\right )\end{align*}
How can we find then the intersection point?

Do we have to write the line segments $AM_{BC}, BM_{CA}, CM_{AB}$in the form $y=mx+n$ ? (Wondering)
 
Physics news on Phys.org
  • #2
mathmari said:
Hey! :eek:

We have a triangle $ABC$ with $A(a_1, a_2)$, $B(b_1, b_2)$ and $C(c_1,c_2)$. I want to show that the coordinates of the centroid S is $\left (\frac{1}{3}(a_1+b_1+c_1),\frac{1}{3}(a_2+b_2+c_2) \right )$.

$S$ is the intersection point of the midpoints of AB, BC and CA.
This doesn't quite make sense. "Points" don't intersect! You mean the mutual point of intersection of the three lines, AB, BC, CA.

We have that \begin{align*}&M_{AB}=\left (\frac{a_1+b_1}{2}, \frac{a_2+b_2}{2}\right ),&M_{BC}=\left (\frac{b_1+c_1}{2}, \frac{b_2+c_2}{2}\right ),&M_{CA}=\left (\frac{c_1+a_1}{2}, \frac{c_2+a_2}{2}\right )\end{align*}
How can we find then the intersection point?

Do we have to write the line segments $AM_{BC}, BM_{CA}, CM_{AB}$in the form $y=mx+n$ ? (Wondering)
Yes, to find the point of intersection of three lines, it is a good idea to write them in that form. It is probably simplest to use the "two point form": the line through $A(a_1, a_2)$ and $B(b_1, b_2)$ is $y= \frac{b_1- b_2}{a_1- a_2}(x- a_1)+ b_1$.
 
  • #3
HallsofIvy said:
This doesn't quite make sense. "Points" don't intersect! You mean the mutual point of intersection of the three lines, AB, BC, CA.

Oh yes, I meant the intersection point of the lines $AM_{BC}, CM_{AB}, BM_{AC}$.
HallsofIvy said:
Yes, to find the point of intersection of three lines, it is a good idea to write them in that form. It is probably simplest to use the "two point form": the line through $A(a_1, a_2)$ and $B(b_1, b_2)$ is $y= \frac{b_1- b_2}{a_1- a_2}(x- a_1)+ b_1$.

The line $AM_{BC}$ is: \begin{equation*}y=\frac{y_M-a_2}{x_M-a_1}(x-a_1)+a_2 \Rightarrow y=\frac{\frac{b_2+c_2}{2}-a_2}{\frac{b_1+c_1}{2}-a_1}(x-a_1)+a_2 \Rightarrow y=\frac{\frac{b_2+c_2-2a_2}{2}}{\frac{b_1+c_1-2a_1}{2}}(x-a_1)+a_2 \Rightarrow y=\frac{b_2+c_2-2a_2}{b_1+c_1-2a_1}(x-a_1)+a_2 \Rightarrow y=\frac{b_2+c_2-2a_2}{b_1+c_1-2a_1}x-a_1\cdot \frac{b_2+c_2-2a_2}{b_1+c_1-2a_1}+a_2\end{equation*}

And the line $CM_{AB}$ is: \begin{equation*}y=\frac{y_M-c_2}{x_M-c_1}(x-c_1)+c_2 \Rightarrow y=\frac{\frac{a_2+b_2}{2}-c_2}{\frac{a_1+b_1}{2}-c_1}(x-c_1)+c_2 \Rightarrow y=\frac{\frac{a_2+b_2-2c_2}{2}}{\frac{a_1+b_1-2c_1}{2}}(x-c_1)+c_2 \Rightarrow y=\frac{a_2+b_2-2c_2}{a_1+b_1-2c_1}(x-c_1)+c_2 \Rightarrow y=\frac{a_2+b_2-2c_2}{a_1+b_1-2c_1}x-c_1\cdot \frac{a_2+b_2-2c_2}{a_1+b_1-2c_1}+c_2\end{equation*}

Since we want to calculate the intersection point of these two line segments, we do the following:
\begin{align*}&\frac{b_2+c_2-2a_2}{b_1+c_1-2a_1}x-a_1\cdot \frac{b_2+c_2-2a_2}{b_1+c_1-2a_1}+a_2=\frac{a_2+b_2-2c_2}{a_1+b_1-2c_1}x-c_1\cdot \frac{a_2+b_2-2c_2}{a_1+b_1-2c_1}+c_2 \\ & \Rightarrow \left (\frac{b_2+c_2-2a_2}{b_1+c_1-2a_1}-\frac{a_2+b_2-2c_2}{a_1+b_1-2c_1}\right )x=-c_1\cdot \frac{a_2+b_2-2c_2}{a_1+b_1-2c_1}+c_2+a_1\cdot \frac{b_2+c_2-2a_2}{b_1+c_1-2a_1}-a_2 \\ & \Rightarrow x=\frac{1}{\frac{b_2+c_2-2a_2}{b_1+c_1-2a_1}-\frac{a_2+b_2-2c_2}{a_1+b_1-2c_1}}\cdot \left (-c_1\cdot \frac{a_2+b_2-2c_2}{a_1+b_1-2c_1}+c_2+a_1\cdot \frac{b_2+c_2-2a_2}{b_1+c_1-2a_1}-a_2\right )\end{align*}

Is everything correct so far? How could we continue? (Wondering)
 
  • #4
It should work, but we can see that it's getting quite messy in a hurry.
I didn't check for mistakes, but logically the next step would be to add/subtract and simplify the fractions.

Alternatively, we can prove that the centroid divides the medians in a ratio 2:1 with similarity of triangles (or we can just take it as a property of the centroid).
See the proof here at the bottom.
And then we can calculate $\overrightarrow A + \frac 23\overrightarrow{AM_{BC}}$ to find the coordinates of the centroid. (Thinking)
 
  • #5
I like Serena said:
It should work, but we can see that it's getting quite messy in a hurry.
I didn't check for mistakes, but logically the next step would be to add/subtract and simplify the fractions.

Alternatively, we can prove that the centroid divides the medians in a ratio 2:1 with similarity of triangles (or we can just take it as a property of the centroid).
See the proof here at the bottom.
And then we can calculate $\overrightarrow A + \frac 23\overrightarrow{AM_{BC}}$ to find the coordinates of the centroid. (Thinking)

Ah ok! I will try it! (Nerd)

I had now the following idea:

We have that:
$\vec{AM_{BC}}=\vec{AC}+\vec{CM_{BC}}=\vec{AC}+\frac{\vec{CB}}{2}=\vec{AC}+\frac{\vec{AC}+\vec{AB}}{2}=\frac{3}{2}\vec{AC}+\frac{1}{2}\vec{AB}$
$\vec{BM_{AC}}=\vec{AB}+\vec{AM_{AC}}=\vec{AB}+\frac{\vec{AC}}{2}=\vec{AB}+\frac{1}{2}\vec{AC}$

It holds that $\vec{AS}+\vec{AB}=\vec{SB}$.

Since $S$ is on the vector $\vec{AM_{BC}}$ we have that $\vec{AS}=k\vec{AM_{BC}}$ and since $S$ is also on the vector $\vec{M_{AC}B}$ we have that $SB=n\vec{M_{AC}B}$.

Therefore we get the following:
$$\vec{AS}+\vec{AB}=\vec{SB} \\ \Rightarrow k\vec{AM_{BC}}+\vec{AB}=n\vec{M_{AC}B} \\ \Rightarrow k\left (\frac{3}{2}\vec{AC}+\frac{1}{2}\vec{AB}\right )+\vec{AB}=n\left (\vec{AB}+\frac{1}{2}\vec{AC}\right ) \\ \Rightarrow \frac{3k}{2}\vec{AC}+\frac{k}{2}\vec{AB}+\vec{AB}=n\vec{AB}+\frac{n}{2}\vec{AC} \\ \Rightarrow \left (\frac{3k}{2}-\frac{n}{2}\right )\vec{AC}+\left (\frac{k}{2}+1-n\right )\vec{AB}=0$$

Is everything correct so far? Can we use here linear independency? (Wondering)
 
  • #6
mathmari said:
It holds that $\vec{AS}+\vec{AB}=\vec{SB}$.

Shouldn't that be $\vec{AS}+\vec{SB}=\vec{AB}$? (Wondering)

mathmari said:
Can we use here linear independency?

I think so yes.
 
  • #7
I like Serena said:
Shouldn't that be $\vec{AS}+\vec{SB}=\vec{AB}$? (Wondering)

Oh yes. I think I have some more typos. Should it be as follows?

We have that:
$\vec{AM_{BC}}=\vec{AC}+\vec{CM_{BC}}=\vec{AC}+\frac{\vec{CB}}{2}=\vec{AC}+\frac{\vec{AC}+\vec{AB}}{2}=\frac{3}{2}\vec{AC}+\frac{1}{2}\vec{AB}$
$\vec{BM_{AC}}=\vec{BA}+\vec{AM_{AC}}=-\vec{AB}+\frac{\vec{AC}}{2}=-\vec{AB}+\frac{1}{2}\vec{AC}$

It holds that $\vec{AS}+\vec{SB}=\vec{AB}$.

Since $S$ is on the vector $\vec{AM_{BC}}$ we have that $\vec{AS}=k\vec{AM_{BC}}$ and since $S$ is also on the vector $\vec{BM_{AC}}$ we have that $SB=n\vec{BM_{AC}}$.

Therefore we get the following:
$$\vec{AS}+\vec{SB}=\vec{AB} \\ \Rightarrow k\vec{AM_{BC}}+n\vec{BM_{AC}}=\vec{AB} \\ \Rightarrow k\left (\frac{3}{2}\vec{AC}+\frac{1}{2}\vec{AB}\right )+n\left (-\vec{AB}+\frac{1}{2}\vec{AC}\right )=\vec{AB} \\ \Rightarrow \frac{3k}{2}\vec{AC}+\frac{k}{2}\vec{AB}-n\vec{AB}+\frac{n}{2}\vec{AC}=\vec{AB} \\ \Rightarrow \left (\frac{3k}{2}+\frac{n}{2}\right )\vec{AC}+\left (\frac{k}{2}-1-n\right )\vec{AB}=0$$ Since $\vec{AC}$ and $\vec{AB}$ are linear independent (because they start at the same point? (Wondering) ) it must hold the following:
$$\frac{3k}{2}+\frac{n}{2}=\frac{k}{2}-1-n=0 \\ \Rightarrow \frac{3k}{2}=-\frac{n}{2} \Rightarrow 3k=-n \ \text{ and } \ \frac{k}{2}=1+n \Rightarrow k=2+2n$$

Therefore we get $3(2+2n)=-n \Rightarrow 6+6n=-n \Rightarrow 7n=-6$.

But shouldn't we get here $\frac{1}{3}$, as the way you suggested above? So have I done something wrong? Or can we not use that way? (Wondering)
 
  • #8
mathmari said:
Oh yes. I think I have some more typos. Should it be as follows?

We have that:
$\vec{AM_{BC}}=\vec{AC}+\vec{CM_{BC}}=\vec{AC}+\frac{\vec{CB}}{2}=\vec{AC}+\frac{\vec{AC}+\vec{AB}}{2}=\frac{3}{2}\vec{AC}+\frac{1}{2}\vec{AB}$

Shouldn't we have $\vec{CB} = \vec{AB} - \vec{AC}$?
Generally a vector can be written as a vector to its end point minus a vector to its starting point. (Nerd)
 
  • #9
I like Serena said:
Shouldn't we have $\vec{CB} = \vec{AB} - \vec{AC}$?
Generally a vector can be written as a vector to its end point minus a vector to its starting point. (Nerd)

Ah ok! So, we have the following:

$\vec{AM_{BC}}=\frac{1}{2}\vec{AC}+\frac{1}{2}\vec{AB}$ and $\vec{BM_{AC}}=-\vec{AB}+\frac{1}{2}\vec{AC}$, right? (Wondering)

Therefore we get the following:
$$\vec{AS}+\vec{SB}=\vec{AB} \\ \Rightarrow k\vec{AM_{BC}}+n\vec{BM_{AC}}=\vec{AB} \\ \Rightarrow k\left (\frac{1}{2}\vec{AC}+\frac{1}{2}\vec{AB}\right )+n\left (-\vec{AB}+\frac{1}{2}\vec{AC}\right )=\vec{AB} \\ \Rightarrow \frac{k}{2}\vec{AC}+\frac{k}{2}\vec{AB}-n\vec{AB}+\frac{n}{2}\vec{AC}=\vec{AB} \\ \Rightarrow \left (\frac{k}{2}+\frac{n}{2}\right )\vec{AC}+\left (\frac{k}{2}-1-n\right )\vec{AB}=0$$ From linear independecy we get the following:
$$\frac{k}{2}+\frac{n}{2}=\frac{k}{2}-1-n=0 \\ \Rightarrow \frac{k}{2}=-\frac{n}{2} \Rightarrow k=-n \ \text{ and } \ \frac{k}{2}=1+n \Rightarrow k=2+2n$$

Therefore we get $2+2n=-n \Rightarrow 3n=-2\Rightarrow n=-\frac{2}{3}$ and so $k=\frac{2}{3}$.

Is everything correct? Are $\vec{AC}$ and $\vec{AB}$ linear independent because they start at the same point?
(Wondering)
 
  • #10
mathmari said:
Is everything correct?

Looks all correct to me. (Happy)
mathmari said:
Are $\vec{AC}$ and $\vec{AB}$ linear independent because they start at the same point?
(Wondering)

Let's consider $\overrightarrow{AC}$ and $\overrightarrow{AM_{AC}}$.
They start from the same point.
Are they independent?

Suppose $\vec{AC}$ and $\vec{AB}$ were not linear independent.
Then one would be a multiple of the other, making them parallel.
But parallel vectors don't span a triangle do they?

In other words, $\vec{AC}$ and $\vec{AB}$ are independent because they span a triangle.
It's not because they start from the same point, because that does not guarantee independence. (Nerd)
 
  • #11
I like Serena said:
Looks all correct to me. (Happy)

So, we have that $$\vec{AS}=\frac{2}{3}\vec{AM_{BC}}=\frac{2}{3}\left (\frac{b_1+c_1}{2}-a_1,\frac{b_2+c_2}{2}-a_2\right ) \Rightarrow (s_1-a_1, s_2-a_2)=\vec{AS}=\frac{2}{3}\left (\frac{b_1+c_1}{2}-a_1,\frac{b_2+c_2}{2}-a_2\right ) $$


So, we get the following relations:
$$s_1-a_1=\frac{2}{3}\left (\frac{b_1+c_1}{2}-a_1\right )\Rightarrow s_1= \frac{2}{3}\frac{b_1+c_1}{2}-\frac{2}{3}a_1+a_1 \Rightarrow s_1= \frac{1}{3}(b_1+c_1)+\frac{1}{3}a_1=\frac{1}{3}(a_1+b_1+c_1)$$
and
$$s_2-a_2=\frac{2}{3}\left (\frac{b_2+c_2}{2}-a_2\right ) \Rightarrow s_2= \frac{2}{3}\frac{b_2+c_2}{2}-\frac{2}{3}a_2+a_2 \Rightarrow s_2= \frac{1}{3}(b_2+c_2)+\frac{1}{3}a_2=\frac{1}{3}(a_2+b_2+c_2)$$ Is everything correct? Could I improve something? (Wondering)
I like Serena said:
Let's consider $\overrightarrow{AC}$ and $\overrightarrow{AM_{AC}}$.
They start from the same point.
Are they independent?

Suppose $\vec{AC}$ and $\vec{AB}$ were not linear independent.
Then one would be a multiple of the other, making them parallel.
But parallel vectors don't span a triangle do they?

In other words, $\vec{AC}$ and $\vec{AB}$ are independent because they span a triangle.
It's not because they start from the same point, because that does not guarantee independence. (Nerd)
So, since $AB$ and $AC$ are not colinear we have that the vector product of $AB$ and $AC$ spans a parallelogram and the half of it is a triangle, right? (Wondering)
 
  • #12
Yep. All correct. (Smile)
 
  • #13
I like Serena said:
Yep. All correct. (Smile)
Thank you very much! (Mmm)
 

FAQ: Finding the Centroid of a Triangle Using Coordinates

1) What is the definition of the centroid?

The centroid is the geometric center of a shape, where all of the individual points of the shape have equal weight.

2) How is the centroid calculated for a two-dimensional shape?

The centroid of a two-dimensional shape can be calculated by finding the average of all the x-coordinates and the average of all the y-coordinates of the shape's points.

3) Can the centroid be located outside of a shape?

Yes, the centroid can be located outside of a shape. This can happen if the shape is not symmetrical or if there is a large concentration of points on one side of the shape.

4) What is the significance of the centroid in geometry and physics?

In geometry, the centroid is often used to find the center of mass of a shape. In physics, it is used to calculate the center of gravity of an object. It is also used in engineering and architecture to determine the stability and balance of structures.

5) Are there any other terms commonly used for the centroid?

Yes, the centroid is also referred to as the center of area, center of mass, or center of gravity.

Back
Top