- #1
karush
Gold Member
MHB
- 3,269
- 5
Let $f(x)=(2x+1)^3$ and let g be the inverse of $f$. Given that $f(0)=1$, what is the value of $g'(1)?$
ok not real sure what the answer is but I did this (could be easier I am sure}
rewrite as
$y=(2x+1)^3$
exchange x and rename y to g
$x=(2g+1)^3$
Cube root each side
$\sqrt[3]{x}=2g+1$
isolate g
$g=\dfrac{\sqrt[3]{x}-1}{2}$
so
$\left(\dfrac{\sqrt[3]{x}-1}{2}\right)'
=\dfrac{1}{6x^{\dfrac{2}{3}}}$
apply $x=1$
$\dfrac{1}{6(1)^{\dfrac{2}{3}}}=\dfrac{1}{6}$hopefully
ok not real sure what the answer is but I did this (could be easier I am sure}
rewrite as
$y=(2x+1)^3$
exchange x and rename y to g
$x=(2g+1)^3$
Cube root each side
$\sqrt[3]{x}=2g+1$
isolate g
$g=\dfrac{\sqrt[3]{x}-1}{2}$
so
$\left(\dfrac{\sqrt[3]{x}-1}{2}\right)'
=\dfrac{1}{6x^{\dfrac{2}{3}}}$
apply $x=1$
$\dfrac{1}{6(1)^{\dfrac{2}{3}}}=\dfrac{1}{6}$hopefully