Finding the directions of eigenvectors symmetric eigenvalue problem

AI Thread Summary
In the symmetric eigenvalue problem, the eigenvectors are derived from the normalized form of the stiffness and mass matrices, represented as Kv=w^2*v. Each eigenvalue corresponds to an eigenspace that can have multiple dimensions, indicating that there is not a single eigenvector but rather a set of vectors. The discussion emphasizes that the negatives of eigenvectors are also valid eigenvectors. In complex vector spaces, normalized eigenvectors can be expressed with a complex phase factor, allowing for variations in their representation. Understanding these aspects is crucial for accurately determining the directions of eigenvectors in symmetric eigenvalue problems.
Andrew1235
Messages
5
Reaction score
1
Homework Statement
In the symmetric eigenvalue problem, K~v=w2v where K~=M−1/2KM−1/2, where K and M are the stiffness and mass matrices respectively.
Relevant Equations
K~v=w2v where K~=M−1/2KM−1/2
In the symmetric eigenvalue problem, Kv=w^2*v where K~=M−1/2KM−1/2, where K and M are the stiffness and mass matrices respectively. The vectors v are the eigenvectors of the matrix K~ which are calculated as in the example below. How do you find the directions of the eigenvectors? The negatives of the eigenvectors of a matrix are also eigenvectors of the matrix.
 

Attachments

  • symmetric.png
    symmetric.png
    37 KB · Views: 141
Physics news on Phys.org
Andrew1235 said:
How do you find the directions of the eigenvectors? The negatives of the eigenvectors of a matrix are also eigenvectors of the matrix.
When we talk about eigenvectors, we are really taking about eigenspaces. Each eigenvalue has an eigenspace of one or more dimensions associated with it. No single vector is the eigenvector. In this case, you have a 1D eigenspace associated with each eigenvalue.

The author has chosen normalised ##v_1, v_2##, which limits the choice to ##\pm v_1, \pm v_2##.

In complex vector spaces, a normalised eigenvector is determined only up to a complex "phase factor" of unit modulus. E.g. a normalised eigenvector can take the form ##\alpha v##, where ##v## is a normalised eigenvector and ##\alpha## is any complex number of unit modulus. And, of course, real numbers of unit modulus reduces to ##\pm 1##.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top