- #1
sbryant1014
- 4
- 0
1. What are the possible eigenvalues of the spin operator [itex] \vec{S} [/itex] for a spin 1/2 particle?
I think these are correct:
[tex] \vec{S} = \frac{\hbar}{2} ( \sigma_x + \sigma_y + \sigma_z ) [/tex]
[tex] \sigma_x = \left(\begin{array}{cc}0 & 1\\1 & 0\end{array}\right),\quad
\sigma_y = \left(\begin{array}{cc}0 & -i\\i & 0\end{array}\right),\quad
\sigma_z = \left(\begin{array}{cc}1 & 0\\0 & -1\end{array}\right),\quad
[/tex]
[tex] \text{Define } {\bf \sigma} = \sigma_x + \sigma_y + \sigma_z = \left(\begin{array}{cc}1 & 1-i\\1+i & -1\end{array}\right) [/tex]
To find the eigenvalues, solve the characteristic polynomial:
[tex] \det (\sigma - \lambda {\bf I}) = 0 [/tex]
[tex] \Rightarrow \lambda = \pm \sqrt{3} [/tex]
So that the eigenvalues of the original operator, [itex] \vec{S} [/itex] are [itex] \pm \frac{\hbar}{2} \sqrt{3} [/itex]?
I'm not sure if I can just add the pauli matrices like that
Homework Equations
I think these are correct:
[tex] \vec{S} = \frac{\hbar}{2} ( \sigma_x + \sigma_y + \sigma_z ) [/tex]
[tex] \sigma_x = \left(\begin{array}{cc}0 & 1\\1 & 0\end{array}\right),\quad
\sigma_y = \left(\begin{array}{cc}0 & -i\\i & 0\end{array}\right),\quad
\sigma_z = \left(\begin{array}{cc}1 & 0\\0 & -1\end{array}\right),\quad
[/tex]
The Attempt at a Solution
[tex] \text{Define } {\bf \sigma} = \sigma_x + \sigma_y + \sigma_z = \left(\begin{array}{cc}1 & 1-i\\1+i & -1\end{array}\right) [/tex]
To find the eigenvalues, solve the characteristic polynomial:
[tex] \det (\sigma - \lambda {\bf I}) = 0 [/tex]
[tex] \Rightarrow \lambda = \pm \sqrt{3} [/tex]
So that the eigenvalues of the original operator, [itex] \vec{S} [/itex] are [itex] \pm \frac{\hbar}{2} \sqrt{3} [/itex]?
I'm not sure if I can just add the pauli matrices like that