- #1
Theorγ
- 57
- 0
Homework Statement
Given a situation where a ball of mass m is dropped off at a height of h, find the equation that would give the velocity of the ball with respect to time given that gravity and drag are intrinsic factors.
Homework Equations
[tex]F_{g} = m g[/tex]
[tex]F_{D} = \frac{1}{2}pCAv^2[/tex]
The Attempt at a Solution
[tex] F_{net}= F_{g} - F_{D}[/tex]
[tex] F_{net} = m g - \frac{1}{2}pCAv^2[/tex]
[tex] a_{net} = g - \frac{1}{2m}pCAv^2[/tex]
[tex] \frac{dv}{dt} = g - \frac{1}{2m}pCAv^2[/tex]
[tex] \int \frac{1}{g - \frac{1}{2m}pCAv^2} dv = \int dt[/tex]
Now I'm stuck; what in the world would you do to integrate the left side? I tried relating [tex]\int\frac{1}{1 - x^2} dx = \int\frac{-1}{(x-1)(x+1)} dx = \frac{1}{2}ln(x + 1) - \frac{1}{2}ln(x - 1) + C[/tex] to the left side and that integrates out by factoring and using partial fractions. However, I can't find any way to easily factor, if the left side is even factorable to begin with...
_________________________
[tex] \int \frac{1}{(\sqrt{g})^2 - (\sqrt{\frac{1}{2m}pCA}v)^2} dv = t + Constant[/tex]
[tex] \int \frac{1}{(\sqrt{g} + (\sqrt{\frac{1}{2m}pCA}v))(\sqrt{g} - (\sqrt{\frac{1}{2m}pCA}v))} dv = t + Constant[/tex]
[tex] \int \frac{\alpha}{(\sqrt{g} + (\sqrt{\frac{1}{2m}pCA}v))} dv + \int \frac{\beta}{(\sqrt{g} - (\sqrt{\frac{1}{2m}pCA}v))} dv = t + Constant[/tex]
[tex] \int \frac{\frac{1}{2\sqrt{g}}}{(\sqrt{g} + (\sqrt{\frac{1}{2m}pCA}v))} dv + \int \frac{\frac{1}{2\sqrt{g}}}{(\sqrt{g} - (\sqrt{\frac{1}{2m}pCA}v))} dv = t + Constant[/tex]
[tex] u_{1} = \sqrt{g} + \sqrt{\frac{1}{2m}pCA}v[/tex]
[tex] \frac{du_{1}}{dv_{1}} = \sqrt{\frac{1}{2m}pCA}[/tex]
[tex] u_{2} = \sqrt{g} - \sqrt{\frac{1}{2m}pCA}v[/tex]
[tex] \frac{du_{2}}{dv_{2}} = -\sqrt{\frac{1}{2m}pCA}[/tex]
[tex] \int \frac{\frac{1}{2\sqrt{g}}}{u_{1}} \frac{du}{\sqrt{\frac{1}{2m}pCA}} - \int \frac{\frac{1}{2\sqrt{g}}}{u_{2}} \frac{du}{\sqrt{\frac{1}{2m}pCA}} = t + Constant[/tex]
[tex] \frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} ln(\sqrt{g} + \sqrt{\frac{1}{2m}pCA}v) - \frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} ln(\sqrt{g} - \sqrt{\frac{1}{2m}pCA}v) = t + Constant[/tex]
Last edited: