Finding the equation for Velocity with Drag

In summary: C\frac{\beta}{\sqrt{g}}x=\frac{2 \alpha }{\beta} \times ln|e^{\frac{\beta}{ \alpha }t}+1| - \frac{2 \alpha }{\beta} \times ln|2e^{\frac{\beta}{2 \alpha }t}| + C\frac{\beta}{\sqrt{g}}x=\frac{2 \alpha }{\beta} \times ln|e^{\frac{\beta}{ \alpha }t}+1| - \frac{2 \alpha }{\beta} \times ln|2| - \frac{2 \alpha }{\beta} \times ln|e
  • #1
Theorγ
57
0

Homework Statement


Given a situation where a ball of mass m is dropped off at a height of h, find the equation that would give the velocity of the ball with respect to time given that gravity and drag are intrinsic factors.


Homework Equations


[tex]F_{g} = m g[/tex]
[tex]F_{D} = \frac{1}{2}pCAv^2[/tex]


The Attempt at a Solution



[tex] F_{net}= F_{g} - F_{D}[/tex]
[tex] F_{net} = m g - \frac{1}{2}pCAv^2[/tex]
[tex] a_{net} = g - \frac{1}{2m}pCAv^2[/tex]
[tex] \frac{dv}{dt} = g - \frac{1}{2m}pCAv^2[/tex]
[tex] \int \frac{1}{g - \frac{1}{2m}pCAv^2} dv = \int dt[/tex]

Now I'm stuck; what in the world would you do to integrate the left side? I tried relating [tex]\int\frac{1}{1 - x^2} dx = \int\frac{-1}{(x-1)(x+1)} dx = \frac{1}{2}ln(x + 1) - \frac{1}{2}ln(x - 1) + C[/tex] to the left side and that integrates out by factoring and using partial fractions. However, I can't find any way to easily factor, if the left side is even factorable to begin with...

_________________________
[tex] \int \frac{1}{(\sqrt{g})^2 - (\sqrt{\frac{1}{2m}pCA}v)^2} dv = t + Constant[/tex]
[tex] \int \frac{1}{(\sqrt{g} + (\sqrt{\frac{1}{2m}pCA}v))(\sqrt{g} - (\sqrt{\frac{1}{2m}pCA}v))} dv = t + Constant[/tex]
[tex] \int \frac{\alpha}{(\sqrt{g} + (\sqrt{\frac{1}{2m}pCA}v))} dv + \int \frac{\beta}{(\sqrt{g} - (\sqrt{\frac{1}{2m}pCA}v))} dv = t + Constant[/tex]
[tex] \int \frac{\frac{1}{2\sqrt{g}}}{(\sqrt{g} + (\sqrt{\frac{1}{2m}pCA}v))} dv + \int \frac{\frac{1}{2\sqrt{g}}}{(\sqrt{g} - (\sqrt{\frac{1}{2m}pCA}v))} dv = t + Constant[/tex]
[tex] u_{1} = \sqrt{g} + \sqrt{\frac{1}{2m}pCA}v[/tex]
[tex] \frac{du_{1}}{dv_{1}} = \sqrt{\frac{1}{2m}pCA}[/tex]
[tex] u_{2} = \sqrt{g} - \sqrt{\frac{1}{2m}pCA}v[/tex]
[tex] \frac{du_{2}}{dv_{2}} = -\sqrt{\frac{1}{2m}pCA}[/tex]
[tex] \int \frac{\frac{1}{2\sqrt{g}}}{u_{1}} \frac{du}{\sqrt{\frac{1}{2m}pCA}} - \int \frac{\frac{1}{2\sqrt{g}}}{u_{2}} \frac{du}{\sqrt{\frac{1}{2m}pCA}} = t + Constant[/tex]
[tex] \frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} ln(\sqrt{g} + \sqrt{\frac{1}{2m}pCA}v) - \frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} ln(\sqrt{g} - \sqrt{\frac{1}{2m}pCA}v) = t + Constant[/tex]
 
Last edited:
Physics news on Phys.org
  • #2
You're on the right track. :smile:
If you substitute ½pCA/m for e.g. k, you can easily use the identity a2 - b2 = (a-b)(a+b), from which you can integrate with partial fractions.

It's going to get messy, though.
 
  • #4
So now that I've solved the velocity function, is there a way to integrate to find the position function of time?
 
  • #5
Well, v = ds/dt, so if you simplify the formula you can integrate it directly.

You're probably going to need to pull out some hyperbolic trigonometry, though.

Although you can do it without hyperbolic trigonometry, too.
 
  • #6
Well I managed to manipulate and simplify the equation into this, but I haven't learned how to use hyperbolic functions, so what do I do?

[tex]a = \frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}}[/tex]
[tex]b = \sqrt{\frac{1}{2m}pCA}[/tex]
[tex]\frac{a}{\sqrt{g}}\frac{ds}{dt} = \frac{e^{bt} - 1}{e^{bt} + 1}[/tex]
[tex]\int\frac{a}{\sqrt{g}} ds= \int\frac{e^{bt} - 1}{e^{bt} + 1} dt[/tex]

____________
EDIT: Okay so I read up briefly on how hyperbolic functions work and this is what I've come up with:
[tex]\int\frac{a}{\sqrt{g}} ds= \int\tanh(\frac{bt}{2}) dt[/tex]
[tex]\frac{a}{\sqrt{g}}s =\frac{2}{b} ln(cosh(\frac{bt}{2})) + Constant[/tex]
 
Last edited:
  • #7
Can someone confirm if I manipulated the hyperbolic function correctly and if I integrated correctly?
 
  • #8
Your integration looks correct. However,
Theorγ said:
[tex]\frac{a}{\sqrt{g}}\frac{ds}{dt} = \frac{e^{bt} - 1}{e^{bt} + 1}[/tex]
there's an error in your simplification. You've forgotten there's an [tex]\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}}[/tex] before the natural logarithms.

I.e.

[tex]\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}}\times ln\left(\frac{|\sqrt{g}+v\sqrt{\frac{1}{2m}pCA}|}{|\sqrt{g}-v\sqrt{\frac{1}{2m}pCA}|}\right)=t+D[/tex]
 
Last edited:
  • #9
So it should be solved like this?:

[tex]\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} \times ln\left(\frac{|\sqrt{g}+v\sqrt{\frac{1}{2m}pCA}|}{ |\sqrt{g}-v\sqrt{\frac{1}{2m}pCA}|}\right)=t+D[/tex]

Because the object is at rest at time 0, then D is:
_____________________________________________________________
[tex]\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} \times ln\left(\frac{|\sqrt{g}+0\sqrt{\frac{1}{2m}pCA}|}{ |\sqrt{g}-0\sqrt{\frac{1}{2m}pCA}|}\right) = 0+D[/tex]
[tex]\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} \times ln\left(\frac{|\sqrt{g}|}{ |\sqrt{g}|}\right) = D[/tex]
[tex]\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} \times ln (1) = D = 0[/tex]
_____________________________________________________________
Using these variables as the following expressions:
[tex]\alpha = \frac{1}{2\sqrt{g}}[/tex]
[tex]\beta = \sqrt{\frac{1}{2m}pCA}[/tex]
_____________________________________________________________
The substitution:
[tex]\frac{\frac{1}{2\sqrt{g}}}{\sqrt{\frac{1}{2m}pCA}} \times ln\left(\frac{|\sqrt{g}+v\sqrt{\frac{1}{2m}pCA}|}{ |\sqrt{g}-v\sqrt{\frac{1}{2m}pCA}|}\right)=t[/tex]
[tex]\frac{\alpha}{\beta} \times ln\left(\frac{|\sqrt{g}+v\beta|}{ |\sqrt{g}-v\beta|}\right)=t[/tex]
[tex]ln\left(\frac{|\sqrt{g}+v\beta|}{ |\sqrt{g}-v\beta|}\right)=\frac{\beta}{\alpha}t[/tex]
[tex]e^{ln\left(\frac{|\sqrt{g}+v\beta|}{ |\sqrt{g}-v\beta|}\right)}=e^{\frac{\beta}{\alpha}t}[/tex]
[tex]\frac{\sqrt{g}+v\beta}{\sqrt{g}-v\beta}=e^{\frac{\beta}{\alpha}t}[/tex]
 
  • #10
Continued from above:
[tex]\sqrt{g}+v\beta=e^{\frac{\beta}{\alpha}t} \times (\sqrt{g}-v\beta)[/tex]
[tex]\sqrt{g}+v\beta=e^{\frac{\beta}{\alpha}t}\sqrt{g}-e^{\frac{\beta}{\alpha}t}v\beta[/tex]
[tex]e^{\frac{\beta}{\alpha}t}v\beta+v\beta=e^{\frac{ \beta }{\alpha}t} \sqrt{g}-\sqrt{g}[/tex]
[tex]v\beta \times (e^{\frac{\beta}{\alpha}t}+1)=\sqrt{g} \times (e^{\frac{\beta}{\alpha}t}-1)[/tex]
[tex]\frac{\beta}{\sqrt{g}}v=\frac{(e^{\frac{\beta}{ \alpha }t}-1)}{(e^{\frac{\beta}{\alpha}t}+1)}[/tex]
[tex]\frac{\beta}{\sqrt{g}}\frac{dx}{dt}=\frac{(e^{ \frac {\beta}{\alpha}t}-1)}{(e^{\frac{\beta}{\alpha}t}+1)}[/tex]
[tex]\int\frac{\beta}{\sqrt{g}}dx=\int\frac{(e^{\frac{ \beta }{ \alpha }t}-1)}{(e^{\frac{\beta}{\alpha}t}+1)}dt[/tex]
____________________________________________
Hyperbolic Substitution:
[tex]\frac{e^{2t}-1}{e^{2t}+1}=tanh(t)[/tex]
[tex]\frac{e^{\frac{ \beta }{ \alpha }t}-1}{e^{\frac{\beta}{\alpha}t}+1}=tanh(\frac{\beta}{2\alpha}t)[/tex]
[tex]\int\frac{\beta}{\sqrt{g}}dx=\int\tanh(\frac{\beta}{2\alpha}t)dt[/tex]
[tex]\frac{\beta}{\sqrt{g}}x=\frac{2 \alpha }{\beta} \times ln|cosh(\frac{\beta}{2 \alpha }t)| + C[/tex]
[tex] cosh(t)=\frac{e^{2t}+1}{2e^t}[/tex]
[tex] cosh(\frac{\beta}{2 \alpha }t)=\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}[/tex]
[tex]\frac{\beta}{\sqrt{g}}x=\frac{2 \alpha }{\beta} \times ln|\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}| + C[/tex]
 
Last edited:
  • #11
Looks fine to me. :smile:
 
  • #12
Because the object is at rest at time 0, then the object has moved a distance of 0:
[tex]\frac{\beta}{\sqrt{g}}x=\frac{2 \alpha }{\beta} \times ln|\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}| + C[/tex]
[tex]\frac{\beta}{\sqrt{g}}0=\frac{2 \alpha }{\beta} \times ln|\frac{e^{\frac{\beta}{ \alpha }0}+1}{2e^{\frac{\beta}{2 \alpha }0}}| + C[/tex]
[tex]0=\frac{2 \alpha }{\beta} \times ln|\frac{2}{2}| + C[/tex]
[tex]0=0 + C[/tex]
[tex]C = 0[/tex]
______________________________________________________
Completing the equation:
[tex]\frac{\beta}{\sqrt{g}}x=\frac{2 \alpha }{\beta} \times ln|\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}|[/tex]
[tex]x=\frac{2 \alpha \sqrt{g}}{\beta^2} \times ln|\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}|[/tex]
____________________________________
Previous Variable Denotation:
[tex]\alpha = \frac{1}{2\sqrt{g}}[/tex]
[tex]\beta = \sqrt{\frac{1}{2m}pCA}[/tex]
____________________________________
Simplification:
[tex]x=\frac{2 \alpha \sqrt{g}}{\beta^2} \times ln|\frac{e^{\frac{\beta}{ \alpha }t}+1}{2e^{\frac{\beta}{2 \alpha }t}}|[/tex]
[tex]x=\frac{2 \frac{1}{2\sqrt{g}} \sqrt{g}}{\sqrt{\frac{1}{2m}pCA}^2} \times ln|\frac{e^{\frac{\sqrt{\frac{1}{2m}pCA}}{ \frac{1}{2\sqrt{g}} }t}+1}{2e^{\frac{ \sqrt{\frac{1}{2m}pCA}}{2 \frac{1}{2\sqrt{g}} }t}}|[/tex]
[tex]x=\frac{2m}{pCA} \times ln|\frac{e^{2 \sqrt{\frac{pCAg}{2m}}t}+1}{2e^{\sqrt{\frac{pCAg}{2m}}t}}|[/tex]
____________________________________
Okay so can someone confirm the validity of my steps now, and confirm whether the below equation represents an object with mass m, dropped at a height of h, with respect to time t, given that gravity and drag are the only forces acting on it:

[tex]h=\frac{2m}{pCA} \times ln|\frac{e^{2 \sqrt{\frac{pCAg}{2m}}t}+1}{2e^{\sqrt{\frac{pCAg}{2m}}t}}|[/tex]
 
Last edited:
  • #13
I redid the problem on paper this time and I got a slightly different answer:

[tex]h=\frac{2mg}{pCA} \times ln|\frac{e^{2 \sqrt{\frac{pCAg}{2m}}t}+1}{2e^{\sqrt{\frac{pCAg}{ 2m}}t}}|[/tex]

Compared to my original one from the above post:

[tex]h=\frac{2m}{pCA} \times ln|\frac{e^{2 \sqrt{\frac{pCAg}{2m}}t}+1}{2e^{\sqrt{\frac{pCAg}{ 2m}}t}}|[/tex]

Can anyone confirm which one is right? My new one contains an extra g, but my other one doesn't...
 
  • #14
Theorγ said:
[tex]h=\frac{2m}{pCA} \times ln|\frac{e^{2 \sqrt{\frac{pCAg}{2m}}t}+1}{2e^{\sqrt{\frac{pCAg}{ 2m}}t}}|[/tex]
It's this one. If you check the units, you get meter.
 

FAQ: Finding the equation for Velocity with Drag

What is the equation for velocity with drag?

The equation for velocity with drag is V = Vt + (V0 - Vt)e^(-kt), where V is the velocity at a given time, V0 is the initial velocity, Vt is the terminal velocity, k is the drag coefficient, and t is the time elapsed.

How is the drag coefficient determined?

The drag coefficient is determined experimentally by measuring the drag force on an object moving through a fluid at various velocities. It can also be calculated using the object's shape and the properties of the fluid it is moving through.

What is the significance of the terminal velocity in this equation?

The terminal velocity, represented by Vt, is the maximum velocity that an object can reach when falling through a fluid due to the balance of gravitational and drag forces. It is an important factor in determining the overall velocity of an object with drag.

How does the equation change for different objects and fluids?

The equation for velocity with drag remains the same, but the values for the drag coefficient and terminal velocity will vary depending on the properties of the object and fluid. For example, a larger or more streamlined object will have a different drag coefficient and terminal velocity than a smaller or less streamlined object.

Can this equation be applied to objects moving through air and water?

Yes, this equation can be applied to both air and water. However, the values for the drag coefficient and terminal velocity will differ due to the differences in density and viscosity between the two fluids.

Back
Top